Carbonaceous catalysts are potential alternatives to metal catalysts. Graphene has been paid much attention for its high surface area and light weight. Here, hydrogenated graphene has been prepared by a simple gamma r...Carbonaceous catalysts are potential alternatives to metal catalysts. Graphene has been paid much attention for its high surface area and light weight. Here, hydrogenated graphene has been prepared by a simple gamma ray irradiation of graphene oxide aqueous suspension at room temperature. Transmission electron microscopic, element analysis, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometer studies verified the hydrogenation of graphene. The as-prepared hydrogenated graphene can be used as a metal-free carbonaceous catalyst for the Fenton-like degradation of organic dye in water.展开更多
For the rapid calibration of multi-line structured light system,a method based on Plücker line was proposed.Most of the conventional line-structured light calibration methods extract the feature points and transf...For the rapid calibration of multi-line structured light system,a method based on Plücker line was proposed.Most of the conventional line-structured light calibration methods extract the feature points and transform the coordinates of points to obtain the plane equation.However,a large number of points lead to complicated operation which is not suitable for the application scenarios of multi-line structured light.To solve this issue,a new calibration method was proposed that applied the form of Plücker matrix throughout the whole calibration process,instead of using the point characteristics directly.The advantage of this method is that the light plane equation can be obtained quickly and accurately in the camera coordinate frame.Correspondingly a planar target particularly for calibrating multi-line structured light was also designed.The regular lines were transformed into Plücker lines by extending the two-dimensional image plane and defining a new image space.To transform the coordinate frame of Plücker lines,the perspective projection mathematical model was re-expressed based on the Plücker matrix.According to the properties of the line and plane in the Plücker space,a linear matrix equation was efficiently constructed by combining the Plücker matrices of several coplanar lines so that the line-structured light plane equation could be furtherly solved.The experiments performed validate the proposed method and demonstrate the significant improvement in the calibration accuracy,when the test distance is 1.8 m,the root mean square(RMS)error of the three-dimensional point is within 0.08 mm.展开更多
The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange mem...The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange membrane and gold(Au) nanoparticles were added by a hydrothermal method. The morphology, structure and composition were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The gas sensing properties were also investigated. Results show that Au nanoparticles are dispersed into the HA powder, which is tube-like, with rough inner and outer surfaces. Compared with pure HA, Au-modified HA exhibits improved sensing properties for NH_3. 5%(mass fraction) Au-modified HA shows the highest response with relatively short response/recovery time. The response is up to 79.2% when the corresponding sensor is exposed to 200×10^(-6) NH_3 at room temperature, and the response time and recovery time are 20 s and 25 s, respectively. For lower concentration, like 50×10^(-6), the response is still up to 70.8%. Good selectivity and repeatability are also observed. The sensing mechanism of high response and selectivity for NH_3 gas was also discussed. These results suggest that Au-HA composite is a promising material for NH_3 sensors operating at room temperature.展开更多
The dispersibility of vermiculite is the key factor that affects the application of vermiculite.In this paper,the milled natural vermiculite was pillared by organic quaternary ammonium salts.Then the pillared vermicul...The dispersibility of vermiculite is the key factor that affects the application of vermiculite.In this paper,the milled natural vermiculite was pillared by organic quaternary ammonium salts.Then the pillared vermiculite was ground and homogenized under the existence of dispersive agent to form a stable vermiculite hydrosol system.Small angle X-ray diffraction(SA-XRD),fourier transform infrared spectroscopy(FTIR),and thermogravimetric analyses(TGA)were used to characterize the structure and thermal property of the vermiculite.The results indicate that the exfoliated vermiculite is successfully obtained.The analyses of laser particle size analyzer,transmission electron microscope(TEM),and Tyndall phenomenon analyzer demonstrate that the vermiculite hydrosol prepared is a stable hydrosol system.展开更多
Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution tr...Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution transmission electron microscope (HRTEM), energy dispersive X-ray (EDX) spectroscope, X-ray diffraction (XRD), and X-ray photoelectron spectroscope (XPS) characterizations on the product B show that the thickness of the carbon shells of CEINPs in the product B is in the range of ca. 0.5-5.3 nm, i. e., which can be as thin as only two layers of graphite. The average diameter of the CEINPs is about 24. 7 nm. The total content of Fe element in the product B is 77.0 wt%. The saturation magnetization (Ms) and coercivity (Hc) of the product B are 107.4 emu/g and 143 Oe. resnectivelv. The formation of the CEINPs in the oroduct B is discussed briefly.展开更多
The chemical vapor deposition(CVD)growth method is applicable to produce high-yield single-crystalline ZnO nanobelts.The Mg-doped ZnO nanobelts with a smooth surface have been successfully synthesized.The morphology,m...The chemical vapor deposition(CVD)growth method is applicable to produce high-yield single-crystalline ZnO nanobelts.The Mg-doped ZnO nanobelts with a smooth surface have been successfully synthesized.The morphology,microstructure and optical properties of the ZnO nanobelts were analyzed by X-ray diffraction(XRD),scanning electron microscope(SEM),transmission electron microscope(TEM),selective area electron diffraction(SAED),energy dispersive X-ray spectroscopy(EDS)and photoluminescence(PL)spectroscopy.Results reveal that the ZnO nanobelts possess good crystalline quality.The special formation mechanism of crystal growth is discussed,emphasizing the effect of polar orientation on the nucleation and growth of the ZnO nanobelts.展开更多
A novel high-effective sunlight-induced AgBr/ZnO hybrid nanophotocatalyst has been synthesized and it was characterized by different techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ...A novel high-effective sunlight-induced AgBr/ZnO hybrid nanophotocatalyst has been synthesized and it was characterized by different techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and ultraviolet-visible spectrophotometry (UV-vis). The AgBr/ZnO hybrid nanophotocatalyst has excellent photocatalytic activity for photodegradation of methyl orange (MO) under sunlight irradiation. The MO degradation efficiency for AgBr/ZnO is about 98% after 1 hour under sunlight irradiation. These results suggested that AgBr/ZnO is a promising candidate for the development of highly efficient sunlight photocatalysts. In addition, the photocatalytic mechanism of AgBr/ZnO under sunlight irradiation is illustrated and discussed.展开更多
Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication ...Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10^(-4) molco·gAu^(-1)·s^(-1) at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2-12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10^(-4) to 7.2 × 10^(-4) molco·gAu^(-1)·S^(-1), at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.展开更多
Nitrogen-doped HTiNbO5 nanosheets have been successfully synthesized by first exfoliating layered HTiNbO5 in tetrabutylammonium hydroxide (TBAOH) to obtain HTiNbO5 nanosheets and then heating the nanosheets with ure...Nitrogen-doped HTiNbO5 nanosheets have been successfully synthesized by first exfoliating layered HTiNbO5 in tetrabutylammonium hydroxide (TBAOH) to obtain HTiNbO5 nanosheets and then heating the nanosheets with urea. The resulting samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and N2 adsorption-desorption measurements. It was found that N-doping resulted in a much higher thermostability of the layered structure, intrinsic bandgap narrowing and a visible light response. The doped nitrogen atoms were mainly located in the interstitial sites of TiNbOs- lamellae and chemically bound to hydrogen ions. Compared with N-doped HTiNbOs, N-doped HTiNbO5 nanosheets had a much larger specific surface area and richer mesoporosity due to fee rather loose and irregular arrangement of fitanoniobate nanosheets. Both N-doped layered HTiNbOs and HTiNbO5 nanosheets showed a very high visible-light photocatalytic activity for the degradation of rhodamine B (RhB) aqueous solution. Moreover, due to the considerably larger surface area, richer mesoporosity and stronger acidity, N-doped HTiNbO5 nanosheets had an even higher activity than N-doped HTiNbOs, although the latter had a stronger absorption in the visible region. The dye molecules were mainly degraded to aliphatic organic compounds and partially mineralized to CO2 and/or CO, rather than being simply decolorized. The effect of photosensitization was insignificant and RhB was degraded mainly via the typical photocatalytic reaction routes. Two different reaction routes for the photodegradation of RhB under visible light irradiation over N-doped HTiNbO5 nanosheets have been proposed. The present method can be extended to a large number of layered metal oxides that have the characteristics of intercalation and exfoliation, thus providing new opportunities for the fabrication of highly effective and potentially practical visible-light photocatalysts.展开更多
In this work, the Pd-based catalysts were designed via immobilizing Pd nanoparticles on graphite oxide (GO) modified with organic base, 1,1,3,3-tetramethylguanidine (TMG), which was used for the selective hydrogenatio...In this work, the Pd-based catalysts were designed via immobilizing Pd nanoparticles on graphite oxide (GO) modified with organic base, 1,1,3,3-tetramethylguanidine (TMG), which was used for the selective hydrogenation of citral. These catalysts were characterized by various techniques including IR, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was demonstrated that the Pd particles with size less than 5 nm were uniformly distributed throughout the support, and they were in the electron-deficient state due to the strong interactions with the modified support. The resultant Pd-TMG/GO catalyst displayed high efficiency for the selective hydrogenation of citral with a turnover frequency of 7100 h-1 as well as superior selectivity to citronellal of 89.6%. Moreover, the catalyst can be reused for five times without obvious activity loss, which may result from its stable structure.展开更多
A simple,mild,and time-saving method is employed to synthesize Ag-SiO2 composite nanospheres with Ag nanoparticles uniformly distributed on the surface of SiO2 nanoparticles.The chemical elements and the morphology of...A simple,mild,and time-saving method is employed to synthesize Ag-SiO2 composite nanospheres with Ag nanoparticles uniformly distributed on the surface of SiO2 nanoparticles.The chemical elements and the morphology of Ag-SiO2 composite nanospheres were analyzed with transmission electron microscopy(TEM),X-ray power diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).On the surface of Ag-SiO2 composite nanospheres,silane coupling agent(KH-550)is introduced as an intermediary to connect the surfaces of SiO2 nanospheres and Ag nanoparticles,which is also helpful for avoiding the aggregation of Ag nanoparticles.It is found that Ag-SiO2 composite nanospheres have very good catalytic properties for the reduction of organic dyes,which may have potential application in wastewater treatment.展开更多
This paper describes the effects of temperature on the complex intermediate processes from the precursor to the fully-crystallized anatase TiO2 nanoparticles in hydrothermal synthesis. The anatase TiO2 nanoparticles w...This paper describes the effects of temperature on the complex intermediate processes from the precursor to the fully-crystallized anatase TiO2 nanoparticles in hydrothermal synthesis. The anatase TiO2 nanoparticles were synthesized in a wide temperature range below 230°C. The composition, morphology, and methylene blue (MB) decoloration characteristics of the obtained products were investigated by X-ray diffraction, Fourier transform infrared spectroscope, X-ray photoelectron spectroscope, and scanning and transmission electron microscope. The dehydrating polycondensation of Ti(IV)-hydrates and the decomposition of (NH4)2Ti3O7 intermediates with the temperature increase lead to the direct formation of anatase TiO2 nanoparticles under the hydrothermal environments. The strong MB decoloration of the hydrothermal products obtained at the low (≤130°C) and high (≥180°C) temperatures are attributed to the adsorption of Ti(IV)-hydrates and the photocatalysis of anatase TiO2 nanoparticles, respectively.展开更多
We report on electrical and optical properties of p+-i-n+ photodetectors/solar cells based on square millimeter arrays of InP nanowires (NWs) grown on InP substrates. The study includes a sample series where the p...We report on electrical and optical properties of p+-i-n+ photodetectors/solar cells based on square millimeter arrays of InP nanowires (NWs) grown on InP substrates. The study includes a sample series where the p+-segment length was varied between 0 and 250 nm, as well as solar cells with 9.3% efficiency with similar design. The electrical data for all devices display clear rectifying behavior with an ideality factor between 1.8 and 2.5 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p^-segment length. Without a p+-segment, photogenerated carriers funneled from the substrate into the NWs contribute strongly to the photocurrent. Adding a p+-segment decouples the substrate and shifts the depletion region, and collection of photogenerated carriers, to the NWs, in agreement with theoretical modeling. In optimized solar cells, clear spectral signatures of interband transitions in the zinc blende and wurtzite InP layers of the mixed-phase i-segments are observed. Complementary electroluminescence, transmission electron microscopy (TEM), as well as measurements of the dependence of the photocurrent on angle of incidence and polarization, support our interpretations.展开更多
文摘Carbonaceous catalysts are potential alternatives to metal catalysts. Graphene has been paid much attention for its high surface area and light weight. Here, hydrogenated graphene has been prepared by a simple gamma ray irradiation of graphene oxide aqueous suspension at room temperature. Transmission electron microscopic, element analysis, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometer studies verified the hydrogenation of graphene. The as-prepared hydrogenated graphene can be used as a metal-free carbonaceous catalyst for the Fenton-like degradation of organic dye in water.
基金National Natural Science Foundation of China(No.51575388)。
文摘For the rapid calibration of multi-line structured light system,a method based on Plücker line was proposed.Most of the conventional line-structured light calibration methods extract the feature points and transform the coordinates of points to obtain the plane equation.However,a large number of points lead to complicated operation which is not suitable for the application scenarios of multi-line structured light.To solve this issue,a new calibration method was proposed that applied the form of Plücker matrix throughout the whole calibration process,instead of using the point characteristics directly.The advantage of this method is that the light plane equation can be obtained quickly and accurately in the camera coordinate frame.Correspondingly a planar target particularly for calibrating multi-line structured light was also designed.The regular lines were transformed into Plücker lines by extending the two-dimensional image plane and defining a new image space.To transform the coordinate frame of Plücker lines,the perspective projection mathematical model was re-expressed based on the Plücker matrix.According to the properties of the line and plane in the Plücker space,a linear matrix equation was efficiently constructed by combining the Plücker matrices of several coplanar lines so that the line-structured light plane equation could be furtherly solved.The experiments performed validate the proposed method and demonstrate the significant improvement in the calibration accuracy,when the test distance is 1.8 m,the root mean square(RMS)error of the three-dimensional point is within 0.08 mm.
基金Project(51272289) supported by the National Natural Science Foundation of China
文摘The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange membrane and gold(Au) nanoparticles were added by a hydrothermal method. The morphology, structure and composition were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The gas sensing properties were also investigated. Results show that Au nanoparticles are dispersed into the HA powder, which is tube-like, with rough inner and outer surfaces. Compared with pure HA, Au-modified HA exhibits improved sensing properties for NH_3. 5%(mass fraction) Au-modified HA shows the highest response with relatively short response/recovery time. The response is up to 79.2% when the corresponding sensor is exposed to 200×10^(-6) NH_3 at room temperature, and the response time and recovery time are 20 s and 25 s, respectively. For lower concentration, like 50×10^(-6), the response is still up to 70.8%. Good selectivity and repeatability are also observed. The sensing mechanism of high response and selectivity for NH_3 gas was also discussed. These results suggest that Au-HA composite is a promising material for NH_3 sensors operating at room temperature.
基金National High Technology Research and Development Program(863 Program),China(No.2007AA03Z336)Program for New Century Excellent Talents in University,China(No.NCET-07-0174)
文摘The dispersibility of vermiculite is the key factor that affects the application of vermiculite.In this paper,the milled natural vermiculite was pillared by organic quaternary ammonium salts.Then the pillared vermiculite was ground and homogenized under the existence of dispersive agent to form a stable vermiculite hydrosol system.Small angle X-ray diffraction(SA-XRD),fourier transform infrared spectroscopy(FTIR),and thermogravimetric analyses(TGA)were used to characterize the structure and thermal property of the vermiculite.The results indicate that the exfoliated vermiculite is successfully obtained.The analyses of laser particle size analyzer,transmission electron microscope(TEM),and Tyndall phenomenon analyzer demonstrate that the vermiculite hydrosol prepared is a stable hydrosol system.
文摘Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution transmission electron microscope (HRTEM), energy dispersive X-ray (EDX) spectroscope, X-ray diffraction (XRD), and X-ray photoelectron spectroscope (XPS) characterizations on the product B show that the thickness of the carbon shells of CEINPs in the product B is in the range of ca. 0.5-5.3 nm, i. e., which can be as thin as only two layers of graphite. The average diameter of the CEINPs is about 24. 7 nm. The total content of Fe element in the product B is 77.0 wt%. The saturation magnetization (Ms) and coercivity (Hc) of the product B are 107.4 emu/g and 143 Oe. resnectivelv. The formation of the CEINPs in the oroduct B is discussed briefly.
基金National Natural Science Foundation of China(90301002,90201025)
文摘The chemical vapor deposition(CVD)growth method is applicable to produce high-yield single-crystalline ZnO nanobelts.The Mg-doped ZnO nanobelts with a smooth surface have been successfully synthesized.The morphology,microstructure and optical properties of the ZnO nanobelts were analyzed by X-ray diffraction(XRD),scanning electron microscope(SEM),transmission electron microscope(TEM),selective area electron diffraction(SAED),energy dispersive X-ray spectroscopy(EDS)and photoluminescence(PL)spectroscopy.Results reveal that the ZnO nanobelts possess good crystalline quality.The special formation mechanism of crystal growth is discussed,emphasizing the effect of polar orientation on the nucleation and growth of the ZnO nanobelts.
基金supported by the National Natural Science Foundation of China (50972063, 51172115)the Key Natural Science Foundation of Shandong Province (ZR2011EMZ001)+4 种基金the Science and Research Development Plan of Education Department in Shandong Province (J06A02)the Tackling Key Program of Science and Technology in Shandong Province (2006GG2203014)the Application Foundation Research Program of Qingdao under Grant No. 09-1-3-27-jcalso the Key Technology Major Research Plan in Qingdao (09-1-4-21-gx)Theinnovation fund for small and medium-sized enterprises of Ministry of Science and Technology (10C26213712086)
文摘A novel high-effective sunlight-induced AgBr/ZnO hybrid nanophotocatalyst has been synthesized and it was characterized by different techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and ultraviolet-visible spectrophotometry (UV-vis). The AgBr/ZnO hybrid nanophotocatalyst has excellent photocatalytic activity for photodegradation of methyl orange (MO) under sunlight irradiation. The MO degradation efficiency for AgBr/ZnO is about 98% after 1 hour under sunlight irradiation. These results suggested that AgBr/ZnO is a promising candidate for the development of highly efficient sunlight photocatalysts. In addition, the photocatalytic mechanism of AgBr/ZnO under sunlight irradiation is illustrated and discussed.
文摘Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at -196℃, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10^(-4) molco·gAu^(-1)·s^(-1) at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2-12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10^(-4) to 7.2 × 10^(-4) molco·gAu^(-1)·S^(-1), at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.
基金Acknowledgements The authors greatly appreciate the financial support of the National Natural Science Foundation of China (Grant Nos. 21073084 and 20773065), the National Basic Research Program (973 Project) (Grant No. 2007CB936302) and the Modern Analysis Center of Nanjing University.
文摘Nitrogen-doped HTiNbO5 nanosheets have been successfully synthesized by first exfoliating layered HTiNbO5 in tetrabutylammonium hydroxide (TBAOH) to obtain HTiNbO5 nanosheets and then heating the nanosheets with urea. The resulting samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and N2 adsorption-desorption measurements. It was found that N-doping resulted in a much higher thermostability of the layered structure, intrinsic bandgap narrowing and a visible light response. The doped nitrogen atoms were mainly located in the interstitial sites of TiNbOs- lamellae and chemically bound to hydrogen ions. Compared with N-doped HTiNbOs, N-doped HTiNbO5 nanosheets had a much larger specific surface area and richer mesoporosity due to fee rather loose and irregular arrangement of fitanoniobate nanosheets. Both N-doped layered HTiNbOs and HTiNbO5 nanosheets showed a very high visible-light photocatalytic activity for the degradation of rhodamine B (RhB) aqueous solution. Moreover, due to the considerably larger surface area, richer mesoporosity and stronger acidity, N-doped HTiNbO5 nanosheets had an even higher activity than N-doped HTiNbOs, although the latter had a stronger absorption in the visible region. The dye molecules were mainly degraded to aliphatic organic compounds and partially mineralized to CO2 and/or CO, rather than being simply decolorized. The effect of photosensitization was insignificant and RhB was degraded mainly via the typical photocatalytic reaction routes. Two different reaction routes for the photodegradation of RhB under visible light irradiation over N-doped HTiNbO5 nanosheets have been proposed. The present method can be extended to a large number of layered metal oxides that have the characteristics of intercalation and exfoliation, thus providing new opportunities for the fabrication of highly effective and potentially practical visible-light photocatalysts.
基金financially supported by the National Natural Science Foundation of China (20903105, 21073202)Chinese Academy of Sciences (KJXC2.YW.H30)
文摘In this work, the Pd-based catalysts were designed via immobilizing Pd nanoparticles on graphite oxide (GO) modified with organic base, 1,1,3,3-tetramethylguanidine (TMG), which was used for the selective hydrogenation of citral. These catalysts were characterized by various techniques including IR, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was demonstrated that the Pd particles with size less than 5 nm were uniformly distributed throughout the support, and they were in the electron-deficient state due to the strong interactions with the modified support. The resultant Pd-TMG/GO catalyst displayed high efficiency for the selective hydrogenation of citral with a turnover frequency of 7100 h-1 as well as superior selectivity to citronellal of 89.6%. Moreover, the catalyst can be reused for five times without obvious activity loss, which may result from its stable structure.
基金supported by the National Natural Science Foundation of China(11174190)the Fundamental Research Funds for the Central Universities(GK201101006)
文摘A simple,mild,and time-saving method is employed to synthesize Ag-SiO2 composite nanospheres with Ag nanoparticles uniformly distributed on the surface of SiO2 nanoparticles.The chemical elements and the morphology of Ag-SiO2 composite nanospheres were analyzed with transmission electron microscopy(TEM),X-ray power diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).On the surface of Ag-SiO2 composite nanospheres,silane coupling agent(KH-550)is introduced as an intermediary to connect the surfaces of SiO2 nanospheres and Ag nanoparticles,which is also helpful for avoiding the aggregation of Ag nanoparticles.It is found that Ag-SiO2 composite nanospheres have very good catalytic properties for the reduction of organic dyes,which may have potential application in wastewater treatment.
基金supported by the Ministry of Science and Technology of China (Grant No. 2010CB631004)the Fundamental Research Funds for the Central Universities (Grant Nos. 1112021302, 1106021343, 1116021301)+1 种基金the PAPD and National Natural Science Foundation of China (Grant Nos. 50831004, 11004098, 51171078)the research fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (Grant No. AE201015)
文摘This paper describes the effects of temperature on the complex intermediate processes from the precursor to the fully-crystallized anatase TiO2 nanoparticles in hydrothermal synthesis. The anatase TiO2 nanoparticles were synthesized in a wide temperature range below 230°C. The composition, morphology, and methylene blue (MB) decoloration characteristics of the obtained products were investigated by X-ray diffraction, Fourier transform infrared spectroscope, X-ray photoelectron spectroscope, and scanning and transmission electron microscope. The dehydrating polycondensation of Ti(IV)-hydrates and the decomposition of (NH4)2Ti3O7 intermediates with the temperature increase lead to the direct formation of anatase TiO2 nanoparticles under the hydrothermal environments. The strong MB decoloration of the hydrothermal products obtained at the low (≤130°C) and high (≥180°C) temperatures are attributed to the adsorption of Ti(IV)-hydrates and the photocatalysis of anatase TiO2 nanoparticles, respectively.
文摘We report on electrical and optical properties of p+-i-n+ photodetectors/solar cells based on square millimeter arrays of InP nanowires (NWs) grown on InP substrates. The study includes a sample series where the p+-segment length was varied between 0 and 250 nm, as well as solar cells with 9.3% efficiency with similar design. The electrical data for all devices display clear rectifying behavior with an ideality factor between 1.8 and 2.5 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p^-segment length. Without a p+-segment, photogenerated carriers funneled from the substrate into the NWs contribute strongly to the photocurrent. Adding a p+-segment decouples the substrate and shifts the depletion region, and collection of photogenerated carriers, to the NWs, in agreement with theoretical modeling. In optimized solar cells, clear spectral signatures of interband transitions in the zinc blende and wurtzite InP layers of the mixed-phase i-segments are observed. Complementary electroluminescence, transmission electron microscopy (TEM), as well as measurements of the dependence of the photocurrent on angle of incidence and polarization, support our interpretations.