Classical network coding permits all internal nodes to encode or decode the incoming messages over proper fields in order to complete a network multicast. Similar quantum encoding scheme cannot be easily followed beca...Classical network coding permits all internal nodes to encode or decode the incoming messages over proper fields in order to complete a network multicast. Similar quantum encoding scheme cannot be easily followed because of various quantum no-go theorems. In this paper, to avoid these theorems in quantum multiple-source networks, we present a photonic strategy by exploring quantum transferring approaches assisted by the weak cross-Kerr nonlinearity. The internal node may nearly deterministically fuse all incoming photons into a single photon with multiple modes. The fused single photon may be transmitted using twophotonic hyperentanglement as a quantum resource. The quantum splitting as the inverse operation of the quantum fusion allows forwarding quantum states under the quantum no-cloning theorem. Furthermore, quantum addressing schemes are presented to complete the quantum transmissions on multiple-source networks going beyond the classical network broadcasts or quantum n-pair transmissions in terms of their reduced forms.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 61772437, 61702427, and 61671087)the Natural Science Foundation of Shandong Province (Grant No. ZR2015FL024)+2 种基金Sichuan Youth Science and Technique Foundation (Grant No. 2017JQ0048)Fundamental Research Funds for the Central Universities (Grant No. 2682014CX095)Chuying Fellowship
文摘Classical network coding permits all internal nodes to encode or decode the incoming messages over proper fields in order to complete a network multicast. Similar quantum encoding scheme cannot be easily followed because of various quantum no-go theorems. In this paper, to avoid these theorems in quantum multiple-source networks, we present a photonic strategy by exploring quantum transferring approaches assisted by the weak cross-Kerr nonlinearity. The internal node may nearly deterministically fuse all incoming photons into a single photon with multiple modes. The fused single photon may be transmitted using twophotonic hyperentanglement as a quantum resource. The quantum splitting as the inverse operation of the quantum fusion allows forwarding quantum states under the quantum no-cloning theorem. Furthermore, quantum addressing schemes are presented to complete the quantum transmissions on multiple-source networks going beyond the classical network broadcasts or quantum n-pair transmissions in terms of their reduced forms.