The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exch...The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.展开更多
Zeolite catalysts,such as H-mordenite(H-MOR),are readily deactivated by coke deposition in carbonylation reactions.Pyridine modification of H-MOR can improve its stability but can lead to an undesirable loss in cataly...Zeolite catalysts,such as H-mordenite(H-MOR),are readily deactivated by coke deposition in carbonylation reactions.Pyridine modification of H-MOR can improve its stability but can lead to an undesirable loss in catalytic activity.Herein,we report the intrinsic impact of the pyridine adsorption behavior on H-MOR and the spacial hindrance of the zeolite frameworks on dimethyl ether(DME)carbonylation at a molecular level.We discovered that acid sites at O2 positions,located on common walls of eight-membered ring(8-MR)side pockets and 12-MR channels,were active in DME carbonylation,but were unfortunately poisoned during pyridine modification.Density functional theory calculations revealed that the pyridine-poisoned acid sites at the O2 positions could be easily regenerated due to the spacial hindrance of the zeolite frameworks.Accordingly,they can be facilely regenerated by proper thermal treatment,which induces 60%promotion in the catalytic activity along with a high stability.Our findings demonstrate the determining role of O2 positions in H-MOR for DME carbonylation and provide a new avenue for the rational design of other efficient zeolite-relevant catalytic systems.展开更多
Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectro...Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectroscopy and quantum chemistry computations. Two car- bonyl stretching vibrational modes (a low-frequency A1 mode and two high-frequency degenerate E modes) were used as vibrational probes. Central metal effect on the CO bond order and force constant was responsible for a larger E-A1 frequency separation and a generally more red-shifted E and A1 peaks in the Re complex than in the Mn complex. A generally broader spectral width for the A1 mode than the E mode is believed to be partially due to vibrational lifetime effect. Vibrational mode-dependent diagonal anharmonicity was observed in transient infrared spectra, with a generally smaller anharmonicity found for the E mode in both the Mn and Re complexes.展开更多
An efficient method for the synthesis of N-Cbz-β-aminoalkanesulfonamides was described.N-Cbz-β-aminoalkanesulfonamides were readily prepared in good yields from a variety of amino alcohols,including optically active...An efficient method for the synthesis of N-Cbz-β-aminoalkanesulfonamides was described.N-Cbz-β-aminoalkanesulfonamides were readily prepared in good yields from a variety of amino alcohols,including optically active ones,via N-Cbz protection with benzyl chloroformate,Mitsunobu esterification reaction with thiolacetic acid,N-chlorosuccinimide oxidation,and ammonolysis process.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.51006110 and No.51276183) and the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331).
文摘The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.
基金supported by the National Natural Science Foundation of China(21476159,21676182)~~
文摘Zeolite catalysts,such as H-mordenite(H-MOR),are readily deactivated by coke deposition in carbonylation reactions.Pyridine modification of H-MOR can improve its stability but can lead to an undesirable loss in catalytic activity.Herein,we report the intrinsic impact of the pyridine adsorption behavior on H-MOR and the spacial hindrance of the zeolite frameworks on dimethyl ether(DME)carbonylation at a molecular level.We discovered that acid sites at O2 positions,located on common walls of eight-membered ring(8-MR)side pockets and 12-MR channels,were active in DME carbonylation,but were unfortunately poisoned during pyridine modification.Density functional theory calculations revealed that the pyridine-poisoned acid sites at the O2 positions could be easily regenerated due to the spacial hindrance of the zeolite frameworks.Accordingly,they can be facilely regenerated by proper thermal treatment,which induces 60%promotion in the catalytic activity along with a high stability.Our findings demonstrate the determining role of O2 positions in H-MOR for DME carbonylation and provide a new avenue for the rational design of other efficient zeolite-relevant catalytic systems.
基金This work was supported by the Hundred Talent Fund of the Chinese Academy of Sciences, and also supported by the National Natural Science Foundation of China (No.21473212, No.20727001 and No.21573243). The author thanks P. Yu and J. Zhao for their technical assistances.
文摘Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectroscopy and quantum chemistry computations. Two car- bonyl stretching vibrational modes (a low-frequency A1 mode and two high-frequency degenerate E modes) were used as vibrational probes. Central metal effect on the CO bond order and force constant was responsible for a larger E-A1 frequency separation and a generally more red-shifted E and A1 peaks in the Re complex than in the Mn complex. A generally broader spectral width for the A1 mode than the E mode is believed to be partially due to vibrational lifetime effect. Vibrational mode-dependent diagonal anharmonicity was observed in transient infrared spectra, with a generally smaller anharmonicity found for the E mode in both the Mn and Re complexes.
基金the support from the National Natural Science Foundation of China(20973013)Beijing Natural Science Foundation(2092022)
文摘An efficient method for the synthesis of N-Cbz-β-aminoalkanesulfonamides was described.N-Cbz-β-aminoalkanesulfonamides were readily prepared in good yields from a variety of amino alcohols,including optically active ones,via N-Cbz protection with benzyl chloroformate,Mitsunobu esterification reaction with thiolacetic acid,N-chlorosuccinimide oxidation,and ammonolysis process.