In a coupled laser system, the dynamics of the receiving laser is investigated when two separate transmitting lasers are injected into the receiving laser with different coupling strengths. It is shown that the phenom...In a coupled laser system, the dynamics of the receiving laser is investigated when two separate transmitting lasers are injected into the receiving laser with different coupling strengths. It is shown that the phenomenon of preference of chaotic synchronization appears under appropriate coupling conditions. The receiving laser will entrain the pulses of either one or both transmitting lasers when the coupling is strong while it keeps its own dynamics when the coupling is weak.展开更多
A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was ...A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was evaluated. Wastewater was fed to the upflow ML-MFC to remove chemical oxygen demand (COD), phosphorus and nitrogen with simultaneous electricity generation. The effluent from the cathode compartment of the upflow ML-MFC was then continuously fed to an external photobioreactor for removing the remaining phosphorus and nitrogen using microalgae. Alone, the upflow ML-MFC produces a maximum power density of 481 mW/m 3 , and obtains 77.9% COD, 23.5% total phosphorus (TP) and 97.6% NH4+-N removals. When combined with the photobioreactor, the system achieves 99.3% TP and 99.0% NH4+-N total removal. These results show both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity and biomass.展开更多
The coupled higher-order nonlinear Schroedinger system is a major subject in nonlinear optics as one of the nonlinear partial differential equation which describes the propagation of optical pulses in optic fibers. By...The coupled higher-order nonlinear Schroedinger system is a major subject in nonlinear optics as one of the nonlinear partial differential equation which describes the propagation of optical pulses in optic fibers. By using coupled amplitude-phase formulation, a series of new exact cnoidal and solitary wave solutions with different parameters are obtained, which may have potential application in optical communication.展开更多
文摘In a coupled laser system, the dynamics of the receiving laser is investigated when two separate transmitting lasers are injected into the receiving laser with different coupling strengths. It is shown that the phenomenon of preference of chaotic synchronization appears under appropriate coupling conditions. The receiving laser will entrain the pulses of either one or both transmitting lasers when the coupling is strong while it keeps its own dynamics when the coupling is weak.
基金Projects(2009GG10005004, 2010GHY10504) supported by the Scientific and Technological Foundation of Shandong Province,ChinaProject(2011GHY11531) supported by the Science and Technology Development Program of Shandong Province,ChinaProject(ZR2009BM015) supported by the Natural Science Foundation of Shandong Province,China
文摘A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was evaluated. Wastewater was fed to the upflow ML-MFC to remove chemical oxygen demand (COD), phosphorus and nitrogen with simultaneous electricity generation. The effluent from the cathode compartment of the upflow ML-MFC was then continuously fed to an external photobioreactor for removing the remaining phosphorus and nitrogen using microalgae. Alone, the upflow ML-MFC produces a maximum power density of 481 mW/m 3 , and obtains 77.9% COD, 23.5% total phosphorus (TP) and 97.6% NH4+-N removals. When combined with the photobioreactor, the system achieves 99.3% TP and 99.0% NH4+-N total removal. These results show both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity and biomass.
文摘The coupled higher-order nonlinear Schroedinger system is a major subject in nonlinear optics as one of the nonlinear partial differential equation which describes the propagation of optical pulses in optic fibers. By using coupled amplitude-phase formulation, a series of new exact cnoidal and solitary wave solutions with different parameters are obtained, which may have potential application in optical communication.