The investigation on optical properties of Si1-xGex/Si strained layer structures has been carried out actively in recent years. The photoluminescence has become a brisker subject in the studies of its various optical ...The investigation on optical properties of Si1-xGex/Si strained layer structures has been carried out actively in recent years. The photoluminescence has become a brisker subject in the studies of its various optical properties. A research development on photoluminescence properties of some new Si1-x Gex/Si strained layer structures is introduced.展开更多
In this study we investigate strain effect in barriers of 1.3 μm AlCalnAs-InP uncooled multiple quantum well lasers. Single effective mass and Kohn-Luttinger Harniltonian equations have been solved to obtain quantum ...In this study we investigate strain effect in barriers of 1.3 μm AlCalnAs-InP uncooled multiple quantum well lasers. Single effective mass and Kohn-Luttinger Harniltonian equations have been solved to obtain quantum states and envelope wave functions in the structure. In the case of unstrained barriers, our simulations results have good agreement with a real device fabricated and presented in one of the references. Our main work is proposal of 0.2% compressive strain in the structure Barriers that causes significant reduction in Leakage current density and Auger current density characteristics in 85 ℃. 20% improvement in mode gain-current density characteristic is also obtained in 85 ℃.展开更多
The tensile strained Ge/SiGe multiple quantum wells (MQWs) grown on a silicon-on-insulator (SOI) substrate were fabricated successfully by ultra-high chemical vapor deposition. Room temperature direct band photolu...The tensile strained Ge/SiGe multiple quantum wells (MQWs) grown on a silicon-on-insulator (SOI) substrate were fabricated successfully by ultra-high chemical vapor deposition. Room temperature direct band photoluminescence from Ge quantum wells on SOI substrate is strongly modulated by Fabry-Perot cavity formed between the surface of Ge and the interface of buried SiO2. The photoluminescence peak intensity at 1.58 μm is enhanced by about 21 times compared with that from the Ge/SiGe quantum wells on Si substrate, and the full width at half maximum (FWHM) is significantly reduced. It is suggested that tensile strained Ge/SiGe multiple quantum wells are one of the promising materials for Si-based microcavity lijzht emitting devices.展开更多
文摘The investigation on optical properties of Si1-xGex/Si strained layer structures has been carried out actively in recent years. The photoluminescence has become a brisker subject in the studies of its various optical properties. A research development on photoluminescence properties of some new Si1-x Gex/Si strained layer structures is introduced.
文摘In this study we investigate strain effect in barriers of 1.3 μm AlCalnAs-InP uncooled multiple quantum well lasers. Single effective mass and Kohn-Luttinger Harniltonian equations have been solved to obtain quantum states and envelope wave functions in the structure. In the case of unstrained barriers, our simulations results have good agreement with a real device fabricated and presented in one of the references. Our main work is proposal of 0.2% compressive strain in the structure Barriers that causes significant reduction in Leakage current density and Auger current density characteristics in 85 ℃. 20% improvement in mode gain-current density characteristic is also obtained in 85 ℃.
基金supported by the National Natural Science Foundation of China(Nos.61036003 and 61176092)the Ph.D.Programs Foundation of Ministry of Education of China(No.20110121110025)
文摘The tensile strained Ge/SiGe multiple quantum wells (MQWs) grown on a silicon-on-insulator (SOI) substrate were fabricated successfully by ultra-high chemical vapor deposition. Room temperature direct band photoluminescence from Ge quantum wells on SOI substrate is strongly modulated by Fabry-Perot cavity formed between the surface of Ge and the interface of buried SiO2. The photoluminescence peak intensity at 1.58 μm is enhanced by about 21 times compared with that from the Ge/SiGe quantum wells on Si substrate, and the full width at half maximum (FWHM) is significantly reduced. It is suggested that tensile strained Ge/SiGe multiple quantum wells are one of the promising materials for Si-based microcavity lijzht emitting devices.