The investigation on optical properties of Si1-xGex/Si strained layer structures has been carried out actively in recent years. The photoluminescence has become a brisker subject in the studies of its various optical ...The investigation on optical properties of Si1-xGex/Si strained layer structures has been carried out actively in recent years. The photoluminescence has become a brisker subject in the studies of its various optical properties. A research development on photoluminescence properties of some new Si1-x Gex/Si strained layer structures is introduced.展开更多
Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of t...Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of the centerpieces of OLEDs, has been the focus of studies by many material scientists. To obtain high luminosity and to keep material costs low, a few remarkable design concepts have been developed. Aggregation-induced emission (AIE) materials were invented to overcome the common fluorescence-quenching problem, and cross-dipole stacking of fluorescent molecules was shown to be an effective method to get high solid-state luminescence. To exceed the limit of internal quantum efficiency of conventional fluorescent materials, phosphorescent materials were successfully applied in highly efficient electroluminescent devices. Most recently, delayed flu- orescent materials via reverse-intersystem crossing (RISC) from triplet to singlet and the "hot exciton" materials based on hy- bridized local and charge-transfer (HLCT) states were developed to he a new generation of low-cost luminescent materials as efficient as phosphorescent materials. In terms of the device-fabrication process, solution-processible small molecular lumi- nescent materials possess the advantages of high purity (vs. polymers) and low procession cost (vs. vacuum deposition), which are garnering them increasing attention. Herein, we review the progress of the development of small-molecule luminescent materials with different design concepts and features, and also briefly examine future development tendencies of luminescent materials.展开更多
High cost of phosphors and significant efficiency roll-off at high brightness are the two main factors that limit the wide application of phosphorescent organic light-emitting diodes (PHOLEDs). Efforts have been pai...High cost of phosphors and significant efficiency roll-off at high brightness are the two main factors that limit the wide application of phosphorescent organic light-emitting diodes (PHOLEDs). Efforts have been paid to find ways to reduce the phosphors' concentration and efficiency roll-off of PHOLEDs. In this work, we reported red emission PHOLEDs with low dopant concentration and low efficiency roll-off based on a novel host material 2,4-biscyanophenyl-6-(12-phenylindole[2,3-a]carbazole-ll-yl)-1,3,5-triazine (BCPICT), with thermally activated delayed fluorescent (TADF) properties. The device with 1.0% dopant concentration displayed a maximum external quantum efficiency of 10.7%. When the dopant concentration was increased to 2.0%, the device displayed a maximum external quantum efficiency of 10.5% and a low efficiency roll-off of 5.7% at 1000 cd/m^2.展开更多
Emerging quantum dots(QDs)based light-emitting field-effect transistors(QLEFETs)could generate light emission with high color purity and provide facile route to tune optoelectronic properties at a low fabrication cost...Emerging quantum dots(QDs)based light-emitting field-effect transistors(QLEFETs)could generate light emission with high color purity and provide facile route to tune optoelectronic properties at a low fabrication cost.Considerable efforts have been devoted to designing device structure and to understanding the underlying physics,yet the overall performance of QLEFETs remains low due to the charge/exciton loss at the interface and the large band offset of a QD layer with respect to the adjacent carrier transport layers.Here,we report highly efficient QLEFETs with an external quantum efficiency(EQE)of over 20%by employing a dielectric-QDs-dielectric(DQD)sandwich structure.Such DQD structure is used to control the carrier behavior by modulating energy band alignment,thus shifting the exciton recombination zone into the emissive layer.Also,enhanced radiative recombination is achieved by preventing the exciton loss due to presence of surface traps and the luminescence quenching induced by interfacial charge transfer.The DQD sandwiched design presents a new concept to improve the electroluminescence performance of QLEFETs,which can be transferred to other material systems and hence can facilitate exploitation of QDs in a new type of optoelectronic devices.展开更多
We fabricated organic light-emitting diodes (OLEDs) with the thermally activated delayed fluorescence (TADF) mate- rial of 4CzlPN, Which show better stability compared with the 4,4'-Bis(carbazol-9-yl)biphenyl ...We fabricated organic light-emitting diodes (OLEDs) with the thermally activated delayed fluorescence (TADF) mate- rial of 4CzlPN, Which show better stability compared with the 4,4'-Bis(carbazol-9-yl)biphenyl (CBP) based devices. The half lifetime of the device using 4CzlPN as host material has doubled, and a slower voltage rise compared with that of CBP-based devices has been achieved, which indicates the improvement of stability. We attribute the better sta- bility to the good film morphology and difficult crystallization property of 4CzlPN. Our results suggest that employing the 4CzlPN as host material can be a promising way of fabricating OLEDs with longer operation lifetime.展开更多
文摘The investigation on optical properties of Si1-xGex/Si strained layer structures has been carried out actively in recent years. The photoluminescence has become a brisker subject in the studies of its various optical properties. A research development on photoluminescence properties of some new Si1-x Gex/Si strained layer structures is introduced.
基金supported by the National Natural Science Foundation of China(21334002,51303057,51373054,91233113)the National Basic Research Program of China(2013CB834705,2014CB643504,2015CB655003)+1 种基金the Fundamental Research Funds for the Central Universities(2013ZZ0001)the Introduced Innovative R&D Team of Guangdong(201101C0105067115)
文摘Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of the centerpieces of OLEDs, has been the focus of studies by many material scientists. To obtain high luminosity and to keep material costs low, a few remarkable design concepts have been developed. Aggregation-induced emission (AIE) materials were invented to overcome the common fluorescence-quenching problem, and cross-dipole stacking of fluorescent molecules was shown to be an effective method to get high solid-state luminescence. To exceed the limit of internal quantum efficiency of conventional fluorescent materials, phosphorescent materials were successfully applied in highly efficient electroluminescent devices. Most recently, delayed flu- orescent materials via reverse-intersystem crossing (RISC) from triplet to singlet and the "hot exciton" materials based on hy- bridized local and charge-transfer (HLCT) states were developed to he a new generation of low-cost luminescent materials as efficient as phosphorescent materials. In terms of the device-fabrication process, solution-processible small molecular lumi- nescent materials possess the advantages of high purity (vs. polymers) and low procession cost (vs. vacuum deposition), which are garnering them increasing attention. Herein, we review the progress of the development of small-molecule luminescent materials with different design concepts and features, and also briefly examine future development tendencies of luminescent materials.
基金supported by the National Natural Science Foundation of China (51525304)the National Key Basic Research and Development Program of China (2015CB655002)
文摘High cost of phosphors and significant efficiency roll-off at high brightness are the two main factors that limit the wide application of phosphorescent organic light-emitting diodes (PHOLEDs). Efforts have been paid to find ways to reduce the phosphors' concentration and efficiency roll-off of PHOLEDs. In this work, we reported red emission PHOLEDs with low dopant concentration and low efficiency roll-off based on a novel host material 2,4-biscyanophenyl-6-(12-phenylindole[2,3-a]carbazole-ll-yl)-1,3,5-triazine (BCPICT), with thermally activated delayed fluorescent (TADF) properties. The device with 1.0% dopant concentration displayed a maximum external quantum efficiency of 10.7%. When the dopant concentration was increased to 2.0%, the device displayed a maximum external quantum efficiency of 10.5% and a low efficiency roll-off of 5.7% at 1000 cd/m^2.
基金support from the National Natural Science Foundation of China(62174104,61735004,and 12174086)the National Key Research and Development Program of China(2016YFB0401702)the Shanghai Science and Technology Committee(19010500600)。
文摘Emerging quantum dots(QDs)based light-emitting field-effect transistors(QLEFETs)could generate light emission with high color purity and provide facile route to tune optoelectronic properties at a low fabrication cost.Considerable efforts have been devoted to designing device structure and to understanding the underlying physics,yet the overall performance of QLEFETs remains low due to the charge/exciton loss at the interface and the large band offset of a QD layer with respect to the adjacent carrier transport layers.Here,we report highly efficient QLEFETs with an external quantum efficiency(EQE)of over 20%by employing a dielectric-QDs-dielectric(DQD)sandwich structure.Such DQD structure is used to control the carrier behavior by modulating energy band alignment,thus shifting the exciton recombination zone into the emissive layer.Also,enhanced radiative recombination is achieved by preventing the exciton loss due to presence of surface traps and the luminescence quenching induced by interfacial charge transfer.The DQD sandwiched design presents a new concept to improve the electroluminescence performance of QLEFETs,which can be transferred to other material systems and hence can facilitate exploitation of QDs in a new type of optoelectronic devices.
基金supported by the National High Technology Research and Development Program of China(No.2012AA011901)the National Basic Research Program of China(No.2012CB723406)+2 种基金the National Natural Science Foundation of China(No.51573036)the Fundamental Research Funds for the Central Universities of China(No.JD2016JGPY0007)the Industry-University-Research Cooperation Project of Aviation Industry Corporation of China(No.CXY2013HFGD20)
文摘We fabricated organic light-emitting diodes (OLEDs) with the thermally activated delayed fluorescence (TADF) mate- rial of 4CzlPN, Which show better stability compared with the 4,4'-Bis(carbazol-9-yl)biphenyl (CBP) based devices. The half lifetime of the device using 4CzlPN as host material has doubled, and a slower voltage rise compared with that of CBP-based devices has been achieved, which indicates the improvement of stability. We attribute the better sta- bility to the good film morphology and difficult crystallization property of 4CzlPN. Our results suggest that employing the 4CzlPN as host material can be a promising way of fabricating OLEDs with longer operation lifetime.