To achieve a new type of carbon-based quantum dots with unique photoluminescence PL a simple approach for fabrication of graphene quantum dots GQDs with oxygen-rich groups was developed via the hydrothermal reaction b...To achieve a new type of carbon-based quantum dots with unique photoluminescence PL a simple approach for fabrication of graphene quantum dots GQDs with oxygen-rich groups was developed via the hydrothermal reaction by using graphene oxides GOs as a precursor. Transmission electron microscope TEM and atomic force microscope AFM characterizations confirmed that the sizes and heights of GQDs were 5.02±0.92 nm and 0.6 nm respectively.A strong PL emission exhibited unique excitation wavelength dependent features.Also the carbene-like free zigzag edge sites were proposed to be the origin of the strong PL emission.The GQDs were demonstrated to be a superior probe for Fe3+ detection in aqueous solution with a high sensitivity and feasibility due to the special coordinate interaction between Fe3+and the phenolic hydroxyl group at GQDs.展开更多
Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bul...Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bulk diffusion is forbidden,and only surface diffusion occurs, resulting in a laser induced quantum dot (LIQD). The diameter of the LIQD is 20-25nm which is much smaller than the as-grown dot and the LIQD has a higher density of about 6 ×10^10cm^-2. The surface morphology evolution is investigated by AFM.展开更多
Self-organized In 0.5 Ga 0.5 As/GaAs quantum island structure emitting at 1.35 μm at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs) 1/(GaAs) 1 monolayer deposition...Self-organized In 0.5 Ga 0.5 As/GaAs quantum island structure emitting at 1.35 μm at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs) 1/(GaAs) 1 monolayer deposition method. Photoluminescence (PL) measurement shows that very narrow PL linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In 0.5 Ga 0.5 As islands structure. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dot (QD) devices.展开更多
At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL ...At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL mechanism for these kinds of carbon materials; doing so can guide the development of effective synthesis routes and novel applications. This review will focus on the PL mechanism of CDs. Three types of fluorescent CDs were involved: graphene quantum dots (GQDs), carbon nanodots (CNDs), and polymer dots (PDs). Four reasonable PL mechanisms have been confirmed: the quantum confinement effect or conjugated 7x-domains, which are determined by the carbon core; the surface state, which is determined by hybridization of the carbon backbone and the connected chemical groups; the molecule state, which is determined solely by the fluorescent molecules connected on the surface or interior of the CDs; and the crosslink- enhanced emission (CEE) effect. To give a thorough summary, the category and synthesis routes, as well as the chemical/physical properties for the CDs, are briefly introduced in advance.展开更多
Photoluminescence(PL) from self-organized Ge quantum dots(QDs) with large size and low density has been investigated over a temperature range from 10 to 300 K using continuous-wave(CW) optical excitation.The integrate...Photoluminescence(PL) from self-organized Ge quantum dots(QDs) with large size and low density has been investigated over a temperature range from 10 to 300 K using continuous-wave(CW) optical excitation.The integrated PL intensity of QDs observed is negligible at about 10 K and rapidly increases with raising temperature up to 100 K.Through analyzing the PL experimental data of the QDs and wetting layer(WL),we provide direct evidence that there exists a potential barrier,arising from the greater compressive strain surrounding large QDs,which could trap carriers in WL at low temperatures and could be overcome via increasing temperature.展开更多
A new concept of energy resonance absorption for photocurrent quenching was proposed using a system of quantum dots(QDs) and the matched dye. The QDs were used as the photocurrent producer, and the dye had an absorpti...A new concept of energy resonance absorption for photocurrent quenching was proposed using a system of quantum dots(QDs) and the matched dye. The QDs were used as the photocurrent producer, and the dye had an absorption band overlapped with that of the QDs, which led to the resonance absorption of the excitation energy and thus decreased the photocurrent of QDs. By using porphyrin and fluorscein isothiocyanate isomer I as the resonance absorption dyes, the proposed mechanism was proved by UV-Vis spectra, photoluminescence spectra and photocurrent-to-wavelength response, respectively. The interaction of the absorption-matched dye with biomolecule could be conveniently used to introduce it into the photocurrent quenching system, leading to a simple switch-off biosensing method for detection of the biomolecule. As example, a label-free method was proposed for photoelectrochemical detection of target DNA. This method showed a detection range from 6.0 to 600 nmol/L with a detection limit of 2.5 nmol/L. The result demonstrated that the photocurrent quenching via energy resonance absorption not only contributed to the theoretical study of photoelectrochemistry, but also provided a universal tool for photoelectrochemical biosensing.展开更多
基金The National Basic Research Program of China(973Program)(No.2013CB932902)the National Natural Science Foundation of China(No.21201034,21173042)the Fundamental Research Funds for the Central Universities(No.3207044403)
文摘To achieve a new type of carbon-based quantum dots with unique photoluminescence PL a simple approach for fabrication of graphene quantum dots GQDs with oxygen-rich groups was developed via the hydrothermal reaction by using graphene oxides GOs as a precursor. Transmission electron microscope TEM and atomic force microscope AFM characterizations confirmed that the sizes and heights of GQDs were 5.02±0.92 nm and 0.6 nm respectively.A strong PL emission exhibited unique excitation wavelength dependent features.Also the carbene-like free zigzag edge sites were proposed to be the origin of the strong PL emission.The GQDs were demonstrated to be a superior probe for Fe3+ detection in aqueous solution with a high sensitivity and feasibility due to the special coordinate interaction between Fe3+and the phenolic hydroxyl group at GQDs.
文摘Ge self-assembled quantum dots (SAQDs) are grown with a self-assembled UHV/CVD epitaxy system. Then, the as-grown Ge quantum dots are annealed by ArF excimer laser. In the ultra-shot laser pulse duration, -20ns, bulk diffusion is forbidden,and only surface diffusion occurs, resulting in a laser induced quantum dot (LIQD). The diameter of the LIQD is 20-25nm which is much smaller than the as-grown dot and the LIQD has a higher density of about 6 ×10^10cm^-2. The surface morphology evolution is investigated by AFM.
文摘Self-organized In 0.5 Ga 0.5 As/GaAs quantum island structure emitting at 1.35 μm at room temperature has been successfully fabricated by molecular beam epitaxy (MBE) via cycled (InAs) 1/(GaAs) 1 monolayer deposition method. Photoluminescence (PL) measurement shows that very narrow PL linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In 0.5 Ga 0.5 As islands structure. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dot (QD) devices.
文摘At present, the actual mechanism of the photoluminescence (PL) of fluorescent carbon dots (CDs) is still an open debate among researchers. Because of the variety of CDs, it is highly important to summarize the PL mechanism for these kinds of carbon materials; doing so can guide the development of effective synthesis routes and novel applications. This review will focus on the PL mechanism of CDs. Three types of fluorescent CDs were involved: graphene quantum dots (GQDs), carbon nanodots (CNDs), and polymer dots (PDs). Four reasonable PL mechanisms have been confirmed: the quantum confinement effect or conjugated 7x-domains, which are determined by the carbon core; the surface state, which is determined by hybridization of the carbon backbone and the connected chemical groups; the molecule state, which is determined solely by the fluorescent molecules connected on the surface or interior of the CDs; and the crosslink- enhanced emission (CEE) effect. To give a thorough summary, the category and synthesis routes, as well as the chemical/physical properties for the CDs, are briefly introduced in advance.
基金supported by the Ministry of Science and Technology of China, the National Natural Science Foundation of China (Grant Nos.10471026 and 10874212)the National High Technology Research and Development Program of China (Grant No 2006AA03A107)
文摘Photoluminescence(PL) from self-organized Ge quantum dots(QDs) with large size and low density has been investigated over a temperature range from 10 to 300 K using continuous-wave(CW) optical excitation.The integrated PL intensity of QDs observed is negligible at about 10 K and rapidly increases with raising temperature up to 100 K.Through analyzing the PL experimental data of the QDs and wetting layer(WL),we provide direct evidence that there exists a potential barrier,arising from the greater compressive strain surrounding large QDs,which could trap carriers in WL at low temperatures and could be overcome via increasing temperature.
基金financially supported by the National Basic Research Program of China(2010CB732400)the National Natural Science Foundation of China(21375060,21135002,21121091)
文摘A new concept of energy resonance absorption for photocurrent quenching was proposed using a system of quantum dots(QDs) and the matched dye. The QDs were used as the photocurrent producer, and the dye had an absorption band overlapped with that of the QDs, which led to the resonance absorption of the excitation energy and thus decreased the photocurrent of QDs. By using porphyrin and fluorscein isothiocyanate isomer I as the resonance absorption dyes, the proposed mechanism was proved by UV-Vis spectra, photoluminescence spectra and photocurrent-to-wavelength response, respectively. The interaction of the absorption-matched dye with biomolecule could be conveniently used to introduce it into the photocurrent quenching system, leading to a simple switch-off biosensing method for detection of the biomolecule. As example, a label-free method was proposed for photoelectrochemical detection of target DNA. This method showed a detection range from 6.0 to 600 nmol/L with a detection limit of 2.5 nmol/L. The result demonstrated that the photocurrent quenching via energy resonance absorption not only contributed to the theoretical study of photoelectrochemistry, but also provided a universal tool for photoelectrochemical biosensing.