The leaf structure, content and the storage location of aloin in the leaves of six species of Aloe L. were studied by means of semi-thin section, high performance liquid chromatography (HPLC) and fluorescent microscop...The leaf structure, content and the storage location of aloin in the leaves of six species of Aloe L. were studied by means of semi-thin section, high performance liquid chromatography (HPLC) and fluorescent microscope. Results showed that all leaves consisted of epidermis, chlorenchyma, aquiferous tissue and vascular bundles. The leaves had the xeromorphic characteristics, including thickened epidermal cell wall, thickened cuticle, sunken stomata and well-developed aquiferous tissue. With the exception of thus, there were remarkable differences in leaf structure among the six species. The chlorenchyma cells were similar to palisade tissues in Aloe arborescens Mill. and A. mutabilis Pillans, but isodiametric in A. vera L., A. vera L. var. chinensis Berg., A. saponaria Hawer and A. greenii Bali. A. arborescens, A. mutabilis, A. very and A. vera var. chinensis included large parenchymatous cells at the vascular bundles, whereas no such cells were observed at the vascular bundles of A. saponaria and A. greenii. In A. arborescens, A. mutabilis and A. vera, the aquiferous tissue sheaths were present and composed of a layer of small parenchymatous cells without chloroplasts around the aquiferous tissue. While there were no aquiferous tissue sheaths in A. vera var. chinensis, A. saponaria and A. greenii. The HPLC revealed that the content of aloin was high in A. arborescens, low in A. vera, and very low in A. saponaria among the six species. The fluorescent microscopy showed that the yellow-green globule only appeared in the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath, but not in the chlorenchyma and aquiferous tissue. Consequently, the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath were the storage location of aloin. They were positively correlated with the content of aloin.展开更多
Two-dimensional mesoporous ultrathin Cd0.5Zn0.5S nanosheets with a thickness of~1.5 nm were fabricated using a multistep chemical transformation strategy involving inorganic–organic hybrid ZnS-ethylenediamine(denoted...Two-dimensional mesoporous ultrathin Cd0.5Zn0.5S nanosheets with a thickness of~1.5 nm were fabricated using a multistep chemical transformation strategy involving inorganic–organic hybrid ZnS-ethylenediamine(denoted as ZnS(en)0.5)as a hard template.Inorganic–organic hybrid ZnS(en)0.5,Cd0.5Zn0.5S(en)x,and Cd0.5Zn0.5S nanosheets were sequentially fabricated,and their transformation processes were analyzed in detail.The fabricated Cd0.5Zn0.5S nanosheets exhibited high photocatalytic hydrogen evolution reaction activity in the presence of a sacrificial agent.The Cd0.5Zn0.5S nanosheets exhibited remarkably high H2 production activity of~1395μmol∙h^−1∙g^−1 in pure water with no co-catalyst,which is the highest value reported thus far for bare photocatalysts,to the best of our knowledge.The high activity of these nanosheets is attributed to their distinct nanostructure(e.g.,short transfer distance of photoinduced charge carriers,large number of unsaturated surface atoms,and large surface area).Moreover,ternary NiCo2S4 nanoparticles were employed to facilitate the charge separation and enhance the surface kinetics of H2 evolution.The H2 production rate reached~62.2 and~2436μmol∙h^−1∙g^−1 in triethanolamine and pure water,respectively,over the NiCo2S4/Cd0.5Zn0.5S heterojunctions.The result indicated that the Schottky junction was critical to the enhanced activity.The proposed method can be used for fabricating other highly efficient CdZnS-based photocatalysts for solar-energy conversion or other applications.展开更多
The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon...The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.展开更多
The synthesis of two-dimensional (2D) layered materials with controllable thickness is of considerable interest for diverse applications. Here we report the first chemical vapor deposition growth of single- and few-...The synthesis of two-dimensional (2D) layered materials with controllable thickness is of considerable interest for diverse applications. Here we report the first chemical vapor deposition growth of single- and few-layer MoSe2 nanosheets. By using Se and MoO3 as the chemical vapor supply, we demonstrate that highly crystalline MoSe2 can be directly grown on the 300 nm SiO2/Si substrates to form optically distinguishable single- and multi-layer nanosheets, typically in triangular shaped domains with edge lengths around 30 btm, which can merge into continuous thin films upon further growth. Micro-Raman spectroscopy and imaging was used to probe the thickness-dependent vibrational properties. Photoluminescence spectroscopy demonstrates that MoSe2 monolayers exhibit strong near band edge emission at 1.55 eV, while bilayers or multi-layers exhibit much weaker emission, indicating of the transition to a direct band gap semiconductor as the thickness is reduced to a monolayer.展开更多
SiO_2/Si substrate has been widely used to support two-dimensional (2-D) crystal flakes grown by chemical vapor deposition or prepared by micromechanical cleavage. The visibility of 2-D flakes is very sensitive to t...SiO_2/Si substrate has been widely used to support two-dimensional (2-D) crystal flakes grown by chemical vapor deposition or prepared by micromechanical cleavage. The visibility of 2-D flakes is very sensitive to the thickness of the SiO_2 layer (hsiO_2), which can not be determined precisely after the deposit of 2-D flakes. Here, we demonstrated a simple, fast and nondestructive tech- nique to precisely determine hsiO_2 of SiO_2 films on Si substrate only by optical contrast measurement with a typical micro-Raman confocal system. Because of its small lateral resolution down to the micrometer scale, this tech- nique can be used to access hsiO_2 on SiO_2/Si substrate that has been partially covered by 2-D crystal flakes, and then further determine the layer number of the 2-D crystal flakes. This technique can be extended to other dielectric multilayer substrates and the layer-number determination of 2-D crystal flakes on those substrates.展开更多
The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for mo...The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for monolayer (1L), bilayer (2L) and nine-layer (9L) h-BN sheets were measured to be -(3.41 ± 0.12)× 10-2, -(3.15 ± 0.14) × 10-2 and -(3.78 ±0.16)× 10-2 cm-1.K-1, respectively. The room-temperature thermal conductivity of few-layer h-BN sheets was found to be in the range from 227 to 280 W.m-1-K-1, which is comparable to that of bulk h-BN, indicating their potential use as important components to solve heat dissipation problems in thermal management configurations.展开更多
SnO2 nanosheet films about 200 nm in thickness are successfully fabricated on fluorine-doped tin oxide (FTO) glass by a facile solution-grown approach. The prepared SnO2 nanosheet film is appfied as an interfacial l...SnO2 nanosheet films about 200 nm in thickness are successfully fabricated on fluorine-doped tin oxide (FTO) glass by a facile solution-grown approach. The prepared SnO2 nanosheet film is appfied as an interfacial layer between the nanocrystalline TiO2 film and the FTO substrate in dye-sensitized solar cells (DSCs). Experimental results show that the introduction of a SnO2 nanosheet film not only suppresses the electron back-transport reaction at the electrolyte/FTO interface but also provides an efficient electron transition channel along the SnO2 nanosheets, and as a result, increasing the open circuit voltage and short current density, and finally improving the conversion efficiency for the DSCs from 3.89% to 4.62%.展开更多
Photocatalytic technology holds great promise in renewable energy and environmental protection.Herein,we report the synthesis of a class of polyaniline-sensitized BiOCI core/shell nanosheets with visible-light photoca...Photocatalytic technology holds great promise in renewable energy and environmental protection.Herein,we report the synthesis of a class of polyaniline-sensitized BiOCI core/shell nanosheets with visible-light photocatalytic activity by a one-step oxidative polymerization method and show how the hybrid nanosheet boosts the photocatalytic activity and stability for degradation of Rhodamine B (RhB).In this unique structure,the ultrathin polyaniline (PANI)as a shell with the thickness of about 1-2nm,can widen the response of the catalyst to visible light to boost photocatalysis and the BiOCI core can promote the separation of photogenerated carriers from the PANI.We demonstrate that the optimized BiOCl/ PANI core/shell photocatalyst shows nearly three times higher photocatalytic activity for the degradation of RhB than pure BLOC1and also shows high stability.This work provides a new strategy for the design of a highly efficient hybrid photo- catalyst driven by visible light.展开更多
Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D...Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D confined adsorbates on the properties of 2D materials is rarely explored. Herein, we combined atomic force microscopy(AFM), Kelvin probe force microscopy(KPFM) and Raman spectroscopy especially the ultralow frequency(ULF) Raman spectroscopy to explore the influence of 2D confined organic adlayer thickness on the ULF breathing modes of few-layer MoS2 and WSe2nanosheets. As the thickness of organic adlayers increased, red shift, coexistence of blue and red shifts as well as blue shift of ULF breathing mode was observed. KPFM measurement confirmed the enhanced n-doping and p-doping behaviors of organic adlayers as their thickness increased,respectively. Our results will provide new insights into the interaction between 2D confined adsorbates and bottom surface of 2D nanosheets, which could be useful for modulating properties of 2D materials.展开更多
Deposition of clean and defect-free atomically thin two-dimensional crystalline flakes on surfaces by mechanical exfoliation of layered bulk materials has proven to be a powerful technique, but it requires a fast, rel...Deposition of clean and defect-free atomically thin two-dimensional crystalline flakes on surfaces by mechanical exfoliation of layered bulk materials has proven to be a powerful technique, but it requires a fast, reliable and non-destructive way to identify the atomically thin flakes among a crowd of thick flakes. In this work, we provide general guidelines to identify ultrathin flakes of TaSe2 by means of optical microscopy and Raman spectroscopy. Additionally, we determine the optimal substrates to facilitate the optical identification of atomically thin TaSe2 crystals. Experimental realization and isolation of ultrathin layers of TaSe2 enables future studies on the role of the dimensionality in interesting phenomena such as superconductivity and charge density waves.展开更多
文摘The leaf structure, content and the storage location of aloin in the leaves of six species of Aloe L. were studied by means of semi-thin section, high performance liquid chromatography (HPLC) and fluorescent microscope. Results showed that all leaves consisted of epidermis, chlorenchyma, aquiferous tissue and vascular bundles. The leaves had the xeromorphic characteristics, including thickened epidermal cell wall, thickened cuticle, sunken stomata and well-developed aquiferous tissue. With the exception of thus, there were remarkable differences in leaf structure among the six species. The chlorenchyma cells were similar to palisade tissues in Aloe arborescens Mill. and A. mutabilis Pillans, but isodiametric in A. vera L., A. vera L. var. chinensis Berg., A. saponaria Hawer and A. greenii Bali. A. arborescens, A. mutabilis, A. very and A. vera var. chinensis included large parenchymatous cells at the vascular bundles, whereas no such cells were observed at the vascular bundles of A. saponaria and A. greenii. In A. arborescens, A. mutabilis and A. vera, the aquiferous tissue sheaths were present and composed of a layer of small parenchymatous cells without chloroplasts around the aquiferous tissue. While there were no aquiferous tissue sheaths in A. vera var. chinensis, A. saponaria and A. greenii. The HPLC revealed that the content of aloin was high in A. arborescens, low in A. vera, and very low in A. saponaria among the six species. The fluorescent microscopy showed that the yellow-green globule only appeared in the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath, but not in the chlorenchyma and aquiferous tissue. Consequently, the large parenchymatous cells of vascular bundles, vascular bundle sheath and aquiferous tissue sheath were the storage location of aloin. They were positively correlated with the content of aloin.
文摘Two-dimensional mesoporous ultrathin Cd0.5Zn0.5S nanosheets with a thickness of~1.5 nm were fabricated using a multistep chemical transformation strategy involving inorganic–organic hybrid ZnS-ethylenediamine(denoted as ZnS(en)0.5)as a hard template.Inorganic–organic hybrid ZnS(en)0.5,Cd0.5Zn0.5S(en)x,and Cd0.5Zn0.5S nanosheets were sequentially fabricated,and their transformation processes were analyzed in detail.The fabricated Cd0.5Zn0.5S nanosheets exhibited high photocatalytic hydrogen evolution reaction activity in the presence of a sacrificial agent.The Cd0.5Zn0.5S nanosheets exhibited remarkably high H2 production activity of~1395μmol∙h^−1∙g^−1 in pure water with no co-catalyst,which is the highest value reported thus far for bare photocatalysts,to the best of our knowledge.The high activity of these nanosheets is attributed to their distinct nanostructure(e.g.,short transfer distance of photoinduced charge carriers,large number of unsaturated surface atoms,and large surface area).Moreover,ternary NiCo2S4 nanoparticles were employed to facilitate the charge separation and enhance the surface kinetics of H2 evolution.The H2 production rate reached~62.2 and~2436μmol∙h^−1∙g^−1 in triethanolamine and pure water,respectively,over the NiCo2S4/Cd0.5Zn0.5S heterojunctions.The result indicated that the Schottky junction was critical to the enhanced activity.The proposed method can be used for fabricating other highly efficient CdZnS-based photocatalysts for solar-energy conversion or other applications.
文摘The laser equipment is one of the key equipment in the production line of the solar energy. In this article, the author de-scribes the application of the laser equipment in the production line of the amorphous silicon film solar cells, and points out that the stable and exactitude is the key direction of the future development of the laser scribing equipment.
文摘The synthesis of two-dimensional (2D) layered materials with controllable thickness is of considerable interest for diverse applications. Here we report the first chemical vapor deposition growth of single- and few-layer MoSe2 nanosheets. By using Se and MoO3 as the chemical vapor supply, we demonstrate that highly crystalline MoSe2 can be directly grown on the 300 nm SiO2/Si substrates to form optically distinguishable single- and multi-layer nanosheets, typically in triangular shaped domains with edge lengths around 30 btm, which can merge into continuous thin films upon further growth. Micro-Raman spectroscopy and imaging was used to probe the thickness-dependent vibrational properties. Photoluminescence spectroscopy demonstrates that MoSe2 monolayers exhibit strong near band edge emission at 1.55 eV, while bilayers or multi-layers exhibit much weaker emission, indicating of the transition to a direct band gap semiconductor as the thickness is reduced to a monolayer.
基金supported by the National Natural Science Foundation of China(11225421,11474277 and11434010)
文摘SiO_2/Si substrate has been widely used to support two-dimensional (2-D) crystal flakes grown by chemical vapor deposition or prepared by micromechanical cleavage. The visibility of 2-D flakes is very sensitive to the thickness of the SiO_2 layer (hsiO_2), which can not be determined precisely after the deposit of 2-D flakes. Here, we demonstrated a simple, fast and nondestructive tech- nique to precisely determine hsiO_2 of SiO_2 films on Si substrate only by optical contrast measurement with a typical micro-Raman confocal system. Because of its small lateral resolution down to the micrometer scale, this tech- nique can be used to access hsiO_2 on SiO_2/Si substrate that has been partially covered by 2-D crystal flakes, and then further determine the layer number of the 2-D crystal flakes. This technique can be extended to other dielectric multilayer substrates and the layer-number determination of 2-D crystal flakes on those substrates.
文摘The thermal conduction of suspended few-layer hexagonal boron nitride (h-BN) sheets was experimentally investigated using a noncontact micro-Raman spectroscopy method. The first-order temperature coefficients for monolayer (1L), bilayer (2L) and nine-layer (9L) h-BN sheets were measured to be -(3.41 ± 0.12)× 10-2, -(3.15 ± 0.14) × 10-2 and -(3.78 ±0.16)× 10-2 cm-1.K-1, respectively. The room-temperature thermal conductivity of few-layer h-BN sheets was found to be in the range from 227 to 280 W.m-1-K-1, which is comparable to that of bulk h-BN, indicating their potential use as important components to solve heat dissipation problems in thermal management configurations.
基金supported by the National Natural Science Foundation of China (Nos.20903073 and 20671070)the Key Project of Education Ministry of China (No.207008)+1 种基金the Natural Science Foundation of Tianjin (No.09JCYBJC07000)the Science and Technology Developing Foundation for Tianjin Universities (No.20080309)
文摘SnO2 nanosheet films about 200 nm in thickness are successfully fabricated on fluorine-doped tin oxide (FTO) glass by a facile solution-grown approach. The prepared SnO2 nanosheet film is appfied as an interfacial layer between the nanocrystalline TiO2 film and the FTO substrate in dye-sensitized solar cells (DSCs). Experimental results show that the introduction of a SnO2 nanosheet film not only suppresses the electron back-transport reaction at the electrolyte/FTO interface but also provides an efficient electron transition channel along the SnO2 nanosheets, and as a result, increasing the open circuit voltage and short current density, and finally improving the conversion efficiency for the DSCs from 3.89% to 4.62%.
基金supported by the National Natural Science Foundation of China (51772255) Hunan Natural Science Foundation (2016JJ3123)+1 种基金 the National Key Research and Development Program of China (2016YFB0100201)the start-up supports from Peking University and Young Thousand Talented Program
文摘Photocatalytic technology holds great promise in renewable energy and environmental protection.Herein,we report the synthesis of a class of polyaniline-sensitized BiOCI core/shell nanosheets with visible-light photocatalytic activity by a one-step oxidative polymerization method and show how the hybrid nanosheet boosts the photocatalytic activity and stability for degradation of Rhodamine B (RhB).In this unique structure,the ultrathin polyaniline (PANI)as a shell with the thickness of about 1-2nm,can widen the response of the catalyst to visible light to boost photocatalysis and the BiOCI core can promote the separation of photogenerated carriers from the PANI.We demonstrate that the optimized BiOCl/ PANI core/shell photocatalyst shows nearly three times higher photocatalytic activity for the degradation of RhB than pure BLOC1and also shows high stability.This work provides a new strategy for the design of a highly efficient hybrid photo- catalyst driven by visible light.
基金supported by the National Natural Science Foundation of China (21571101 and 51322202)the Natural Science Foundation of Jiangsu Province in China (BK20161543 and BK20130927)+1 种基金the Joint Research Fund for Overseas Chinese, Hong Kong and Macao Scholars (51528201)Natural Science Foundation of Jiangsu Higher Education Institutions of China (15KJB430016)
文摘Recently, it has been reported that physisorbed adsorbates can be trapped between the bottom surface of twodimensional(2D) materials and supported substrate to form2 D confined films. However, the influence of such 2D confined adsorbates on the properties of 2D materials is rarely explored. Herein, we combined atomic force microscopy(AFM), Kelvin probe force microscopy(KPFM) and Raman spectroscopy especially the ultralow frequency(ULF) Raman spectroscopy to explore the influence of 2D confined organic adlayer thickness on the ULF breathing modes of few-layer MoS2 and WSe2nanosheets. As the thickness of organic adlayers increased, red shift, coexistence of blue and red shifts as well as blue shift of ULF breathing mode was observed. KPFM measurement confirmed the enhanced n-doping and p-doping behaviors of organic adlayers as their thickness increased,respectively. Our results will provide new insights into the interaction between 2D confined adsorbates and bottom surface of 2D nanosheets, which could be useful for modulating properties of 2D materials.
文摘Deposition of clean and defect-free atomically thin two-dimensional crystalline flakes on surfaces by mechanical exfoliation of layered bulk materials has proven to be a powerful technique, but it requires a fast, reliable and non-destructive way to identify the atomically thin flakes among a crowd of thick flakes. In this work, we provide general guidelines to identify ultrathin flakes of TaSe2 by means of optical microscopy and Raman spectroscopy. Additionally, we determine the optimal substrates to facilitate the optical identification of atomically thin TaSe2 crystals. Experimental realization and isolation of ultrathin layers of TaSe2 enables future studies on the role of the dimensionality in interesting phenomena such as superconductivity and charge density waves.