期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于近红外光谱的SG-MSC-MC-UVE-PLS算法在全血血红蛋白浓度检测中的应用
被引量:
7
1
作者
孙代青
谢丽蓉
+2 位作者
周延
郭煜涛
车少敏
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021年第9期2754-2758,共5页
为提高全血血红蛋白浓度预测模型的预测精度,基于近红外光谱分析,首先对原始全血透射光谱数据分别进行均值中心化、标准化、标准正态变量变换(SNV)、多元散射校正(MSC)以及Savitzky-Golay(SG)卷积平滑结合MSC的预处理操作,最终选择预处...
为提高全血血红蛋白浓度预测模型的预测精度,基于近红外光谱分析,首先对原始全血透射光谱数据分别进行均值中心化、标准化、标准正态变量变换(SNV)、多元散射校正(MSC)以及Savitzky-Golay(SG)卷积平滑结合MSC的预处理操作,最终选择预处理效果最好的SG-MSC方法作为数据预处理方法,其最大相关系数达到0.9441。对SG平滑的平滑窗口宽度进行讨论,找出平滑效果最好的窗口宽度为27。数据预处理消除了全血吸收光谱的基线失真,提高了全血吸收光谱数据的信噪比。将190个样本(190个血红蛋白浓度对应的透射光谱数据)分为具有相近血红蛋白浓度分布的校正集和测试集,其中校正集为143个样本(对应血红蛋白浓度分布为10.6~17.3 g·dL^(-1)),测试集为47个样本(对应血红蛋白浓度分布为10.3~17.3 g·dL^(-1)),确保建立模型的适用性。对校正集数据预处理后利用蒙特卡洛无信息变量消除(MC-UVE)方法对其进行波长变量选择,剔除含信息量少的波长点,提高含信息量多的波长占比。设置蒙特卡洛迭代次数为1000,最终从全血吸收光谱的700个波长变量中筛选出191个波长变量用于建立全血血红蛋白浓度偏最小二乘(PLS)回归模型。对比分析原始全血透射光谱全谱PLS模型、原始全血吸收光谱全谱PLS模型、预处理全血吸收光谱全谱PLS模型、SG-MSC-MC-UVE-PLS模型以及已有二阶导数PLS模型的模型效果,表明基于SG-MSC-MC-UVE-PLS算法的全血血红蛋白浓度预测模型效果较其他模型效果更优,预测相关系数由0.6763提高到0.9791,预测集均方根误差由0.8981减小到0.2203,最大绝对误差由2.4261减小到0.4112。同时,利用MC-UVE方法进行波长变量选择,在保证预测精度的前提下,筛选出建模的波长个数更少,有利于提高模型计算效率。研究结果表明,SG-MSC-MC-UVE-PLS方法能够提高全血吸收光谱信号的信噪比,简化模型结构,提高模型的预测精度和计算效率,对推动血红蛋白浓度检测技术的发展具有进步意义。
展开更多
关键词
近红外
光谱
全血血红蛋白浓度预测
光谱信号预处理
无信息变量消除
下载PDF
职称材料
题名
基于近红外光谱的SG-MSC-MC-UVE-PLS算法在全血血红蛋白浓度检测中的应用
被引量:
7
1
作者
孙代青
谢丽蓉
周延
郭煜涛
车少敏
机构
新疆大学电气工程学院
西安交通大学能源动力工程学院
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021年第9期2754-2758,共5页
基金
国家自然科学基金项目(51667021)
新疆维吾尔自治区区域协同创新专项(2018E02072)资助。
文摘
为提高全血血红蛋白浓度预测模型的预测精度,基于近红外光谱分析,首先对原始全血透射光谱数据分别进行均值中心化、标准化、标准正态变量变换(SNV)、多元散射校正(MSC)以及Savitzky-Golay(SG)卷积平滑结合MSC的预处理操作,最终选择预处理效果最好的SG-MSC方法作为数据预处理方法,其最大相关系数达到0.9441。对SG平滑的平滑窗口宽度进行讨论,找出平滑效果最好的窗口宽度为27。数据预处理消除了全血吸收光谱的基线失真,提高了全血吸收光谱数据的信噪比。将190个样本(190个血红蛋白浓度对应的透射光谱数据)分为具有相近血红蛋白浓度分布的校正集和测试集,其中校正集为143个样本(对应血红蛋白浓度分布为10.6~17.3 g·dL^(-1)),测试集为47个样本(对应血红蛋白浓度分布为10.3~17.3 g·dL^(-1)),确保建立模型的适用性。对校正集数据预处理后利用蒙特卡洛无信息变量消除(MC-UVE)方法对其进行波长变量选择,剔除含信息量少的波长点,提高含信息量多的波长占比。设置蒙特卡洛迭代次数为1000,最终从全血吸收光谱的700个波长变量中筛选出191个波长变量用于建立全血血红蛋白浓度偏最小二乘(PLS)回归模型。对比分析原始全血透射光谱全谱PLS模型、原始全血吸收光谱全谱PLS模型、预处理全血吸收光谱全谱PLS模型、SG-MSC-MC-UVE-PLS模型以及已有二阶导数PLS模型的模型效果,表明基于SG-MSC-MC-UVE-PLS算法的全血血红蛋白浓度预测模型效果较其他模型效果更优,预测相关系数由0.6763提高到0.9791,预测集均方根误差由0.8981减小到0.2203,最大绝对误差由2.4261减小到0.4112。同时,利用MC-UVE方法进行波长变量选择,在保证预测精度的前提下,筛选出建模的波长个数更少,有利于提高模型计算效率。研究结果表明,SG-MSC-MC-UVE-PLS方法能够提高全血吸收光谱信号的信噪比,简化模型结构,提高模型的预测精度和计算效率,对推动血红蛋白浓度检测技术的发展具有进步意义。
关键词
近红外
光谱
全血血红蛋白浓度预测
光谱信号预处理
无信息变量消除
Keywords
Near-infrared spectroscopy
Whole blood hemoglobin concentration detection
Spectral signals preprocessing
Uninformed variable elimination
分类号
O657.33 [理学—分析化学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于近红外光谱的SG-MSC-MC-UVE-PLS算法在全血血红蛋白浓度检测中的应用
孙代青
谢丽蓉
周延
郭煜涛
车少敏
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2021
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部