The total internal partition sums (TIPS) are calculated at the temperature up to 6000 K for 12 C16 02. Using the calculated partition functions, we produce the line intensities of v3 band of 12C1602 at several high ...The total internal partition sums (TIPS) are calculated at the temperature up to 6000 K for 12 C16 02. Using the calculated partition functions, we produce the line intensities of v3 band of 12C1602 at several high temperatures. The results show that the calculated line intensities are in very good agreement with those of HITRAN database at the temperature up to 3000 K, which provides a strong support for the calculations of TIPS and line intensities at high temperature. Then the calculation is extended to further high temperature, and the simulated spectra of u3 band of 12C1602 at 5000 and 6000 K are reported.展开更多
A multispectral imaging system consisting of liquid crystal tunable filter(LCTF)and charge coupled device(CCD)camera was used to collect the images of fingernail samples at intervals of 10 nm during the spectral range...A multispectral imaging system consisting of liquid crystal tunable filter(LCTF)and charge coupled device(CCD)camera was used to collect the images of fingernail samples at intervals of 10 nm during the spectral range of 450-1 000 nm,and a multispectral image of human fingernails containing 56 bands was obtained.The accurate reflectivity information of fingernails was obtained through referring whiteboard comparative measurement method.Principal component analysis(PCA)and band index method were used to reduce the dimension of the sample images respectively and two feature spaces were obtained.Spectral angle mapping(SAM)was used to classify human fingernails in these two feature spaces.The classification accuracy were above 92.5%and 82.9%respectively.Therefore,the feature space obtained by the PCA can be used as the characteristic spectrum of human fingernails,which provides a reliable basis for the analysis of multispectral spectrum of fingernails and human health assessment in the future.展开更多
Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an ex...Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method.展开更多
In order to monitor malt quality in the malting industry, despite yearly variations in the barley quality, 394 barley samples were analysed using conventional (moisture, protein and B-glucan content) and mid-infrare...In order to monitor malt quality in the malting industry, despite yearly variations in the barley quality, 394 barley samples were analysed using conventional (moisture, protein and B-glucan content) and mid-infrared Fourier transform spectroscopy FT-IR. The experimental dataset included barley from three harvest years, two barley species, 77 barley varieties, and two-row and six-row barley, from 16 cultivation sites. For each sample, the malt quality indices were also assessed according to European Brewing Convention (EBC) standards. Principal component analysis (PCA) was carried out on mean-centred, normalized and derivative spectra using 200/cm width spectral bands. The most informative spectral bands were observed in the 800-1,000/cm and 1,000-1,200/cm ranges. PCA revealed that barley harvested in 2010 and in 2011 had bands that were very close together, while 2009 harvest clearly displayed a difference in its quality. PCA made it possible to distinguish two species and confirmed that two-row winter barley quality was closer to two-row spring barley quality than to six-row winter barley. Results indicate that mid-infrared spectrometry (MIR) could be a very useful and rapid analytical tool to assess barley qualitative quality.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10676025, and the Research Fund for the Doctoral Program of High Education of China under Grant No. 20050610010
文摘The total internal partition sums (TIPS) are calculated at the temperature up to 6000 K for 12 C16 02. Using the calculated partition functions, we produce the line intensities of v3 band of 12C1602 at several high temperatures. The results show that the calculated line intensities are in very good agreement with those of HITRAN database at the temperature up to 3000 K, which provides a strong support for the calculations of TIPS and line intensities at high temperature. Then the calculation is extended to further high temperature, and the simulated spectra of u3 band of 12C1602 at 5000 and 6000 K are reported.
基金Nationnal Natural Science Foundation of China(No.61605176)
文摘A multispectral imaging system consisting of liquid crystal tunable filter(LCTF)and charge coupled device(CCD)camera was used to collect the images of fingernail samples at intervals of 10 nm during the spectral range of 450-1 000 nm,and a multispectral image of human fingernails containing 56 bands was obtained.The accurate reflectivity information of fingernails was obtained through referring whiteboard comparative measurement method.Principal component analysis(PCA)and band index method were used to reduce the dimension of the sample images respectively and two feature spaces were obtained.Spectral angle mapping(SAM)was used to classify human fingernails in these two feature spaces.The classification accuracy were above 92.5%and 82.9%respectively.Therefore,the feature space obtained by the PCA can be used as the characteristic spectrum of human fingernails,which provides a reliable basis for the analysis of multispectral spectrum of fingernails and human health assessment in the future.
文摘Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method.
文摘In order to monitor malt quality in the malting industry, despite yearly variations in the barley quality, 394 barley samples were analysed using conventional (moisture, protein and B-glucan content) and mid-infrared Fourier transform spectroscopy FT-IR. The experimental dataset included barley from three harvest years, two barley species, 77 barley varieties, and two-row and six-row barley, from 16 cultivation sites. For each sample, the malt quality indices were also assessed according to European Brewing Convention (EBC) standards. Principal component analysis (PCA) was carried out on mean-centred, normalized and derivative spectra using 200/cm width spectral bands. The most informative spectral bands were observed in the 800-1,000/cm and 1,000-1,200/cm ranges. PCA revealed that barley harvested in 2010 and in 2011 had bands that were very close together, while 2009 harvest clearly displayed a difference in its quality. PCA made it possible to distinguish two species and confirmed that two-row winter barley quality was closer to two-row spring barley quality than to six-row winter barley. Results indicate that mid-infrared spectrometry (MIR) could be a very useful and rapid analytical tool to assess barley qualitative quality.