With the development of precision agriculture, the research that applies Remote Sensing technology, especially hyperspectral remote sensing, to realize crop management, monitoring and yield estimation, has been concer...With the development of precision agriculture, the research that applies Remote Sensing technology, especially hyperspectral remote sensing, to realize crop management, monitoring and yield estimation, has been concerned. Nowadays, the growth-monitoring and yield-estimating methods in rice, wheat and other annual crops develop rapidly with some achievements having already been put into service. But the yield estimation research on perennial economic crops is few. Taking peren- nial citrus trees as the research object, using ASD spectrometer to collect citrus canopy spectral, this article studied and analyzed the citrus of veget&tion index and its relationship on yield, synthetically considered the influence of the agriculture pa- rameters on crop yield, and finally constructed the citrus yield estimation model based on the spectral data and agronomic parameters. Through the Significance Test and Samples' Test, olutained that the model's fitting degree was R=0.631, F= 13.201, P〈0.01 and the error rate of estimating accuracy was controlled in the range 3%-16%, proving that the model has statistical signification and reliability. It concluded that hyperspectral acquired from citrus canopy has substantial potential for citrus yield estimation. This study is an application and exploration of Hyperspectral Remote Sensing technology in the citrus yield estimation.展开更多
In this work, the results on the investigation of the precularity near the solar spectrum region, of Zn1.xCdxSe nanofilms, nanoscale heterojunction prepared on silikon and alumminium substrates by precipitation from a...In this work, the results on the investigation of the precularity near the solar spectrum region, of Zn1.xCdxSe nanofilms, nanoscale heterojunction prepared on silikon and alumminium substrates by precipitation from aqueous solutions are presented. The temperature dependence of dark and light conductivity, spectrum and optical quenching of primary and impurity photoconductivity are investigated. The obtained results show that when controlling ionic composition and HT (heat-treatment) conditions, one can purposely control the properties of Zn1-xCdxSe (0 ≤ x ≤ 0.6) films, achieve the appropriate degree of compensation of different recombination levels and traps attributed to intrinsic defects or impurities, which result in high level of photoelectrical parameters near the IR region. Just after deposition the photoconductivity spectrum maximum of Zn1-xCdxSe (0 〈 x 〈 0.6) films is observed at λ1 = 0.545 + 0.495/am versus the film composition.展开更多
The PD(X^3∑^-) interaction potential is constructed using the CCSD(T) theory and the basis set, augcc-pV5Z. Using this potential, the spectroscopic parameters are accurately determined. The present Do, De, Re, ω...The PD(X^3∑^-) interaction potential is constructed using the CCSD(T) theory and the basis set, augcc-pV5Z. Using this potential, the spectroscopic parameters are accurately determined. The present Do, De, Re, ωe, ωeχe, αe, and Be are of 3.056 99 eV, 3.161 75 eV, 0.142 39 nm, 1701.558 cm^-1, 23.6583 cm^-1, 0.085 99 cm^-1, and 4.3963 cm^-1, respectively, which almost perfectly conform with the measurements. A total of 26 vibrational states is predicted when J = 0 by solving the radial Sehrodinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which favorably agree with the experiments. The total and various partial-wave cross sections are calculated for the elastic impact between two ground-state P and D atoms at 1.0 × 10^-12 - 1.0 × 10^-4 a.u. when they approach each other along the PD(X^3∑^-) potential. No shape resonances exist in the total elastic cross sections, though the peaks can be found for each partial wave until l=6. The shape of the total elastic cross sections is dominated by the s partial wave at very low temperatures. Due to the weakness of the shape resonances of each partial wave, they are all passed into oblivion by the strong total elastic cross sections.展开更多
基金Supported by the central university basic scientific research fund(XDJK2009C006)from Ministry of Educationthe National Youth Science Fund(41201436)from National Science Counci~~
文摘With the development of precision agriculture, the research that applies Remote Sensing technology, especially hyperspectral remote sensing, to realize crop management, monitoring and yield estimation, has been concerned. Nowadays, the growth-monitoring and yield-estimating methods in rice, wheat and other annual crops develop rapidly with some achievements having already been put into service. But the yield estimation research on perennial economic crops is few. Taking peren- nial citrus trees as the research object, using ASD spectrometer to collect citrus canopy spectral, this article studied and analyzed the citrus of veget&tion index and its relationship on yield, synthetically considered the influence of the agriculture pa- rameters on crop yield, and finally constructed the citrus yield estimation model based on the spectral data and agronomic parameters. Through the Significance Test and Samples' Test, olutained that the model's fitting degree was R=0.631, F= 13.201, P〈0.01 and the error rate of estimating accuracy was controlled in the range 3%-16%, proving that the model has statistical signification and reliability. It concluded that hyperspectral acquired from citrus canopy has substantial potential for citrus yield estimation. This study is an application and exploration of Hyperspectral Remote Sensing technology in the citrus yield estimation.
文摘In this work, the results on the investigation of the precularity near the solar spectrum region, of Zn1.xCdxSe nanofilms, nanoscale heterojunction prepared on silikon and alumminium substrates by precipitation from aqueous solutions are presented. The temperature dependence of dark and light conductivity, spectrum and optical quenching of primary and impurity photoconductivity are investigated. The obtained results show that when controlling ionic composition and HT (heat-treatment) conditions, one can purposely control the properties of Zn1-xCdxSe (0 ≤ x ≤ 0.6) films, achieve the appropriate degree of compensation of different recombination levels and traps attributed to intrinsic defects or impurities, which result in high level of photoelectrical parameters near the IR region. Just after deposition the photoconductivity spectrum maximum of Zn1-xCdxSe (0 〈 x 〈 0.6) films is observed at λ1 = 0.545 + 0.495/am versus the film composition.
基金Supported by the Program for Science & Technology Innovation Talents in Universities of Henan Province in China under GrantNo. 2008HASTIT008the National Natural Science Foundation of China under Grant Nos. 60777012 and 10874064
文摘The PD(X^3∑^-) interaction potential is constructed using the CCSD(T) theory and the basis set, augcc-pV5Z. Using this potential, the spectroscopic parameters are accurately determined. The present Do, De, Re, ωe, ωeχe, αe, and Be are of 3.056 99 eV, 3.161 75 eV, 0.142 39 nm, 1701.558 cm^-1, 23.6583 cm^-1, 0.085 99 cm^-1, and 4.3963 cm^-1, respectively, which almost perfectly conform with the measurements. A total of 26 vibrational states is predicted when J = 0 by solving the radial Sehrodinger equation of nuclear motion. The complete vibrational levels, classical turning points, initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which favorably agree with the experiments. The total and various partial-wave cross sections are calculated for the elastic impact between two ground-state P and D atoms at 1.0 × 10^-12 - 1.0 × 10^-4 a.u. when they approach each other along the PD(X^3∑^-) potential. No shape resonances exist in the total elastic cross sections, though the peaks can be found for each partial wave until l=6. The shape of the total elastic cross sections is dominated by the s partial wave at very low temperatures. Due to the weakness of the shape resonances of each partial wave, they are all passed into oblivion by the strong total elastic cross sections.