Quantitative remote sensing inversion is ill-posed. The Moderate Resolution Imaging Spectroradiometer at 250 m resolution (MODIS_250m) contains two bands. To deal with this ill-posed inversion of MODIS_250m data, we...Quantitative remote sensing inversion is ill-posed. The Moderate Resolution Imaging Spectroradiometer at 250 m resolution (MODIS_250m) contains two bands. To deal with this ill-posed inversion of MODIS_250m data, we propose a framework, the Multi-scale, Multi-stage, Sample-direction Dependent, Target-decisions (Multi-scale MSDT) inversion method, based on spa- tial knowledge. First, MODIS images (1 km, 500 m, 250 m) are used to extract multi-scale spatial knowledge. The inversion accuracy of MODIS_lkm data is improved by reducing the impact of spatial heterogeneity. Then, coarse-scale inversion is taken as prior knowledge for the fine scale, again by inversion. The prior knowledge is updated after each inversion step. At each scale, MODIS_lkm to MODIS_250m, the inversion is directed by the Uncertainty and Sensitivity Matrix (USM), and the most uncertain parameters are inversed by the most sensitive data. All remote sensing data are involved in the inversion, during which multi-scale spatial knowledge is introduced, to reduce the impact of spatial heterogeneity. The USM analysis is used to implement a reasonable allocation of limited remote sensing data in the model space. In the entire multi-scale inversion process field data, spatial knowledge and multi-scale remote sensing data are all involved. As the multi-scale, multi-stage inversion is gradually refined, initial expectations of parameters become more reasonable and their uncertainty range is effectively reduced, so that the inversion becomes increasingly targeted. Finally, the method is tested by retrieving the Leaf Area Index (LAI) of the crop canopy in the Heihe River Basin. The results show that the proposed method is reliable.展开更多
Expanded 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxaline dyes with variable substitution pattern on the peripheral thiophene ring were synthesized in moderate to very good yields by Suzuki and Buchwald-Har...Expanded 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxaline dyes with variable substitution pattern on the peripheral thiophene ring were synthesized in moderate to very good yields by Suzuki and Buchwald-Hartwig coupling of the corresponding brominated 3-ethynyl quinoxalines. Dumbbell-shaped bis(thienyl 3-ethynyl quinoxalines) are also accessible by the Suzuki protocol. The photophysical properties were investigated by UV and fluorescence spectroscopy. Most of the obtained compounds display fluorescence in solution and some of them also in the solid state. Additionally, tuning of the emission color of the quinoxaline based chromophores can be conveniently accomplished by the remote substituent group. The determined absorption and emission maximum as well as the Stokes shifts strongly correlate with Hammett σp+parameters. Besides,photophysical properties of selected derivatives in the solid state, biphasic solutions, and PMMA films, along with their relationships, are comparatively investigated. Moreover, two 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxaline dyes are aggregation induced emission(AIE) chromophores indicated by restriction of molecular motions. A covalently restricted 3-ethynyl quinoxaline supports that the inhibition of molecular rotation is responsible for the significant enhancement of fluorescence in acetonitrile/water mixtures.展开更多
基金supported by Action Plan for West Development Program of the Chinese Academy of Sciences (Grant No. KZCX2-XB2-09)National Basic Research Program of China (Grant No. 2007CB714407)Na-tional Natural Science Foundation of China (Grant No.40801070)
文摘Quantitative remote sensing inversion is ill-posed. The Moderate Resolution Imaging Spectroradiometer at 250 m resolution (MODIS_250m) contains two bands. To deal with this ill-posed inversion of MODIS_250m data, we propose a framework, the Multi-scale, Multi-stage, Sample-direction Dependent, Target-decisions (Multi-scale MSDT) inversion method, based on spa- tial knowledge. First, MODIS images (1 km, 500 m, 250 m) are used to extract multi-scale spatial knowledge. The inversion accuracy of MODIS_lkm data is improved by reducing the impact of spatial heterogeneity. Then, coarse-scale inversion is taken as prior knowledge for the fine scale, again by inversion. The prior knowledge is updated after each inversion step. At each scale, MODIS_lkm to MODIS_250m, the inversion is directed by the Uncertainty and Sensitivity Matrix (USM), and the most uncertain parameters are inversed by the most sensitive data. All remote sensing data are involved in the inversion, during which multi-scale spatial knowledge is introduced, to reduce the impact of spatial heterogeneity. The USM analysis is used to implement a reasonable allocation of limited remote sensing data in the model space. In the entire multi-scale inversion process field data, spatial knowledge and multi-scale remote sensing data are all involved. As the multi-scale, multi-stage inversion is gradually refined, initial expectations of parameters become more reasonable and their uncertainty range is effectively reduced, so that the inversion becomes increasingly targeted. Finally, the method is tested by retrieving the Leaf Area Index (LAI) of the crop canopy in the Heihe River Basin. The results show that the proposed method is reliable.
基金supported by the Fonds der Chemischen Industrie and Deutsche Forschungsgemeinschaft (Mu 1088/9-1)
文摘Expanded 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxaline dyes with variable substitution pattern on the peripheral thiophene ring were synthesized in moderate to very good yields by Suzuki and Buchwald-Hartwig coupling of the corresponding brominated 3-ethynyl quinoxalines. Dumbbell-shaped bis(thienyl 3-ethynyl quinoxalines) are also accessible by the Suzuki protocol. The photophysical properties were investigated by UV and fluorescence spectroscopy. Most of the obtained compounds display fluorescence in solution and some of them also in the solid state. Additionally, tuning of the emission color of the quinoxaline based chromophores can be conveniently accomplished by the remote substituent group. The determined absorption and emission maximum as well as the Stokes shifts strongly correlate with Hammett σp+parameters. Besides,photophysical properties of selected derivatives in the solid state, biphasic solutions, and PMMA films, along with their relationships, are comparatively investigated. Moreover, two 5-(hetero)aryl-thien-2-yl substituted 3-ethynyl quinoxaline dyes are aggregation induced emission(AIE) chromophores indicated by restriction of molecular motions. A covalently restricted 3-ethynyl quinoxaline supports that the inhibition of molecular rotation is responsible for the significant enhancement of fluorescence in acetonitrile/water mixtures.