Recent advances in large area graphene growth have led to many applications in different areas. In the present study, chemical vapor deposited (CVD) monolayer graphene supported on glass substrate electrochemical bi...Recent advances in large area graphene growth have led to many applications in different areas. In the present study, chemical vapor deposited (CVD) monolayer graphene supported on glass substrate electrochemical biosensing applications was examined as electrode material for We report a facile strategy for covalent functionalization of CVD monolayer graphene by electrochemical reduction of carboxyphenyl diazonium salt prepared in situ in acidic aqueous solution. The carboxyphenyl-modified graphene is characterized using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), as well as electrochemical impedance spectroscopy (hIS). We also show that the number of grafted carboxyphenyl groups on the graphene surface can be controlled by the number of cyclic voltammetry (CV) scans used for electrografting. We further present the fabrication and characterization of an immunosensor based on immobilization of ovalbumin antibody on the graphene surface after the activation of the grafted carboxylic groups via EDC/NHS chemistry. The binding between the surface-immobilized antibodies and ovalbumin was then monitored using Faradaic EIS in [Fe(CN)6]^3-/4- solution. The percentage change of charge transfer resistance (Rct) after binding exhibited a linear dependence for ovalbumin concentrations ranging from 1.0 pg·mL^-1 to 100 ng·mL^-1, with a detection limit of 0.9 pg·mL^-1. Our results indicate good sensitivity of the developed functionalized CVD graphene platform, paving the way for using CVD monolayer graphene in a variety of electrochemical biosensing devices.展开更多
文摘Recent advances in large area graphene growth have led to many applications in different areas. In the present study, chemical vapor deposited (CVD) monolayer graphene supported on glass substrate electrochemical biosensing applications was examined as electrode material for We report a facile strategy for covalent functionalization of CVD monolayer graphene by electrochemical reduction of carboxyphenyl diazonium salt prepared in situ in acidic aqueous solution. The carboxyphenyl-modified graphene is characterized using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), as well as electrochemical impedance spectroscopy (hIS). We also show that the number of grafted carboxyphenyl groups on the graphene surface can be controlled by the number of cyclic voltammetry (CV) scans used for electrografting. We further present the fabrication and characterization of an immunosensor based on immobilization of ovalbumin antibody on the graphene surface after the activation of the grafted carboxylic groups via EDC/NHS chemistry. The binding between the surface-immobilized antibodies and ovalbumin was then monitored using Faradaic EIS in [Fe(CN)6]^3-/4- solution. The percentage change of charge transfer resistance (Rct) after binding exhibited a linear dependence for ovalbumin concentrations ranging from 1.0 pg·mL^-1 to 100 ng·mL^-1, with a detection limit of 0.9 pg·mL^-1. Our results indicate good sensitivity of the developed functionalized CVD graphene platform, paving the way for using CVD monolayer graphene in a variety of electrochemical biosensing devices.