激光诱导击穿光谱(LIBS)技术用于液体样品探测时,存在光谱信号稳定性差和重复性差的问题,限制了该技术的实际应用。为了提升液相LIBS的稳定性,基于等离子体直接成像和气泡投影成像探测方法,采集了光谱与后向(Coaxial)、侧向(Lateral)等...激光诱导击穿光谱(LIBS)技术用于液体样品探测时,存在光谱信号稳定性差和重复性差的问题,限制了该技术的实际应用。为了提升液相LIBS的稳定性,基于等离子体直接成像和气泡投影成像探测方法,采集了光谱与后向(Coaxial)、侧向(Lateral)等离子体图像及气泡图像的同步数据,并对光谱强度与3类图像的强度和形态特征之间的相关性进行了分析,结果表明后向等离子体图像的总辐射强度与光谱强度的相关性最高;在此基础上利用后向等离子体图像信息对光谱强度进行校正,光谱强度(Li I 670.8nm)的相对偏差由10.24%降低为4.14%,且LIBS的定量分析性能也有所提升,从而证明了图像辅助的光谱校正方法应用于液相LIBS分析的可行性。展开更多
Two gain forms of spectral amplitude subtraction are derived theoretically without neglecting the correlation of speech and noise spectrum during the period of a fralne. In the implementation, the constrained gain is ...Two gain forms of spectral amplitude subtraction are derived theoretically without neglecting the correlation of speech and noise spectrum during the period of a fralne. In the implementation, the constrained gain is expressed as a function of noncausal a priori SNR (Signal-to-Noise Ratio). Noise and noncausal a priori SNR are estimated from the multitaper spectrum of the noisy signal with algorithms modified to be suitable for the multitaper spectruln. Objective evaluations show that in case of white Gaussian noise the proposed method outperforms some methods based on LSA (Log Spectral Amplitude) in terms of MBSD (Modified Bark Spectral Distortion), segmental SNR and overall SNR, and informal listening tests show that speech reconstructed in this way has little speech distortion and musical noise is nearly inaudible even at low SNR.展开更多
A method for determining calcium (Ca), potassium (K), magnesium (Mg) and iron (Fe) in four fish species was opti- mized and validated. It included microwave mineralization of the samples and subsequent quantif...A method for determining calcium (Ca), potassium (K), magnesium (Mg) and iron (Fe) in four fish species was opti- mized and validated. It included microwave mineralization of the samples and subsequent quantification by flame atomic absorption spectroscopy (FAAS) with Zeeman-effect background correction. Using HNO3 (65%) and H202 (33%) as extraction solutions, the optimal conditions of extraction were established as follows: 0.5 g of sample mass; microwave time program of 300 W/5 min and 600 W/5 min. The method was free of matrix interferences. The linear correlation coefficients were ≥0.9991, the recovery percentage of analytes was from 99.31% to 103.70% and the RSD (relative standard deviation) was lower than 2.06%. The detection limits obtained were 32.3, 43.2, 14.0 and 68.6ng mL^-1 for Ca, K, Mg and Fe in FAAS respectively. It is shown that the method is rapid, simple, sensitive and accurate. The method was applied to the studies of digestibility and measurement of these nutrients in samples of fish collected from Norway, Japan and China.展开更多
文摘激光诱导击穿光谱(LIBS)技术用于液体样品探测时,存在光谱信号稳定性差和重复性差的问题,限制了该技术的实际应用。为了提升液相LIBS的稳定性,基于等离子体直接成像和气泡投影成像探测方法,采集了光谱与后向(Coaxial)、侧向(Lateral)等离子体图像及气泡图像的同步数据,并对光谱强度与3类图像的强度和形态特征之间的相关性进行了分析,结果表明后向等离子体图像的总辐射强度与光谱强度的相关性最高;在此基础上利用后向等离子体图像信息对光谱强度进行校正,光谱强度(Li I 670.8nm)的相对偏差由10.24%降低为4.14%,且LIBS的定量分析性能也有所提升,从而证明了图像辅助的光谱校正方法应用于液相LIBS分析的可行性。
基金Supported by 973 Project of China (No.2002 CB312102)and the National Natural Science Foundation of China (No.60272044).
文摘Two gain forms of spectral amplitude subtraction are derived theoretically without neglecting the correlation of speech and noise spectrum during the period of a fralne. In the implementation, the constrained gain is expressed as a function of noncausal a priori SNR (Signal-to-Noise Ratio). Noise and noncausal a priori SNR are estimated from the multitaper spectrum of the noisy signal with algorithms modified to be suitable for the multitaper spectruln. Objective evaluations show that in case of white Gaussian noise the proposed method outperforms some methods based on LSA (Log Spectral Amplitude) in terms of MBSD (Modified Bark Spectral Distortion), segmental SNR and overall SNR, and informal listening tests show that speech reconstructed in this way has little speech distortion and musical noise is nearly inaudible even at low SNR.
文摘A method for determining calcium (Ca), potassium (K), magnesium (Mg) and iron (Fe) in four fish species was opti- mized and validated. It included microwave mineralization of the samples and subsequent quantification by flame atomic absorption spectroscopy (FAAS) with Zeeman-effect background correction. Using HNO3 (65%) and H202 (33%) as extraction solutions, the optimal conditions of extraction were established as follows: 0.5 g of sample mass; microwave time program of 300 W/5 min and 600 W/5 min. The method was free of matrix interferences. The linear correlation coefficients were ≥0.9991, the recovery percentage of analytes was from 99.31% to 103.70% and the RSD (relative standard deviation) was lower than 2.06%. The detection limits obtained were 32.3, 43.2, 14.0 and 68.6ng mL^-1 for Ca, K, Mg and Fe in FAAS respectively. It is shown that the method is rapid, simple, sensitive and accurate. The method was applied to the studies of digestibility and measurement of these nutrients in samples of fish collected from Norway, Japan and China.