In order to combine feature extraction operations with specific hyperspectral remote sensing information processing objectives,two aspects of feature extraction were explored. Based on clustering and decision tree alg...In order to combine feature extraction operations with specific hyperspectral remote sensing information processing objectives,two aspects of feature extraction were explored. Based on clustering and decision tree algorithm,spectral absorption index (SAI),continuum-removal and derivative spectral analysis were employed to discover characterized spectral features of different targets,and decision trees for identifying a specific class and discriminating different classes were generated. By combining support vector machine (SVM) classifier with different feature extraction strategies including principal component analysis (PCA),minimum noise fraction (MNF),grouping PCA,and derivate spectral analysis,the performance of feature extraction approaches in classification was evaluated. The results show that feature extraction by PCA and derivate spectral analysis are effective to OMIS (operational modular imaging spectrometer) image classification using SVM,and SVM outperforms traditional SAM and MLC classifiers for OMIS data.展开更多
Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-an...Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS 1H NMRS) can provide important information on tumor biology and metabolism.These metabolic fingerprints can then be used for tumor classification and grading,with great potential value for tumor diagnosis.We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies,including two astrocytomas (grade I),12 astrocytomas (grade II),eight anaplastic astrocytomas (grade III),three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS 1H NMRS.The results were correlated with pathological features using multivariate data analysis,including principal component analysis (PCA).There were significant differences in the levels of N-acetyl-aspartate (NAA),creatine,myo-inositol,glycine and lactate between tumors of different grades (P<0.05).There were also significant differences in the ratios of NAA/creatine,lactate/creatine,myo-inositol/creatine,glycine/creatine,scyllo-inositol/creatine and alanine/creatine (P<0.05).A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%.HRMAS 1H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades.展开更多
基金Projects 40401038 and 40871195 supported by the National Natural Science Foundation of ChinaNCET-06-0476 by the Program for New Century Excellent Talents in University20070290516 by the Specialized Research Fund for the Doctoral Program of Higher Education
文摘In order to combine feature extraction operations with specific hyperspectral remote sensing information processing objectives,two aspects of feature extraction were explored. Based on clustering and decision tree algorithm,spectral absorption index (SAI),continuum-removal and derivative spectral analysis were employed to discover characterized spectral features of different targets,and decision trees for identifying a specific class and discriminating different classes were generated. By combining support vector machine (SVM) classifier with different feature extraction strategies including principal component analysis (PCA),minimum noise fraction (MNF),grouping PCA,and derivate spectral analysis,the performance of feature extraction approaches in classification was evaluated. The results show that feature extraction by PCA and derivate spectral analysis are effective to OMIS (operational modular imaging spectrometer) image classification using SVM,and SVM outperforms traditional SAM and MLC classifiers for OMIS data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20573132 and 20575074)China Postdoctoral Science Foundation (Grant No. 20090450065)State Key Laboratory of Mag-netic Resonance and Atomic and Molecular Physics (Grant No. T152805)
文摘Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS 1H NMRS) can provide important information on tumor biology and metabolism.These metabolic fingerprints can then be used for tumor classification and grading,with great potential value for tumor diagnosis.We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies,including two astrocytomas (grade I),12 astrocytomas (grade II),eight anaplastic astrocytomas (grade III),three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS 1H NMRS.The results were correlated with pathological features using multivariate data analysis,including principal component analysis (PCA).There were significant differences in the levels of N-acetyl-aspartate (NAA),creatine,myo-inositol,glycine and lactate between tumors of different grades (P<0.05).There were also significant differences in the ratios of NAA/creatine,lactate/creatine,myo-inositol/creatine,glycine/creatine,scyllo-inositol/creatine and alanine/creatine (P<0.05).A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%.HRMAS 1H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades.