期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于类别光谱变化规律的土地利用变化检测 被引量:8
1
作者 王琰 舒宁 +1 位作者 龚龑 李雪 《国土资源遥感》 CSCD 北大核心 2012年第3期92-96,共5页
提出了一种基于类别光谱变化规律的高分辨率遥感图像土地利用变化检测方法。在基准期土地利用图的辅助下,以像斑为图像分析的基本单位,分别建立不同类别像斑特征在基准期和检测期图像上的分布曲线,通过三次多项式拟合参数表征上述2个时... 提出了一种基于类别光谱变化规律的高分辨率遥感图像土地利用变化检测方法。在基准期土地利用图的辅助下,以像斑为图像分析的基本单位,分别建立不同类别像斑特征在基准期和检测期图像上的分布曲线,通过三次多项式拟合参数表征上述2个时期特征值分布曲线的变化规律,在此基础上获取变化阈值,进行迭代计算,找出不符合类别光谱变化规律的像斑,确认为发生变化的像斑。以武汉市局部2002年、2005年QuickBird多光谱图像及相同区域2002年土地利用图为实验数据,以绿地和城区为例,对上述方法进行验证,证明上述方法有效。 展开更多
关键词 变化检测 高分辨率 土地利用 像斑 面向对象 类别光谱变化规律
下载PDF
海洋浮游植物三维荧光光谱的逐层分类方法研究 被引量:2
2
作者 李鸿羽 张前前 +2 位作者 王修林 刘金涛 张凯临 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第7期117-125,共9页
提出活体海洋浮游植物三维荧光光谱逐层分类法,将浮游植物区分为不同的"光谱类别"。选取中国近海常见的26种分属于甲藻、硅藻、黄藻、金藻、隐藻、绿藻、蓝藻的浮游植物,在室温20℃和3个光照条件下培养,在第3,6,9,12,15天测... 提出活体海洋浮游植物三维荧光光谱逐层分类法,将浮游植物区分为不同的"光谱类别"。选取中国近海常见的26种分属于甲藻、硅藻、黄藻、金藻、隐藻、绿藻、蓝藻的浮游植物,在室温20℃和3个光照条件下培养,在第3,6,9,12,15天测其三维荧光光谱。采用主成份分析结合非负最小二乘回归法(NNLSR),以浮游植物叶绿素a的发射峰680nm所对应的激发光谱作为第一特征谱以区分门类,以EX730谱作为硅藻的逐层分类的第二特征谱,SY350谱作为甲藻的第二特征谱,将实验所用9种硅藻和8种甲藻各划分为3个光谱类别;分析405个浮游植物混合物,门类识别正确率大于94%,光谱类别的识别正确率为75%,该方法可用于海洋浮游植物种群结构变化的快速宏观监测。 展开更多
关键词 逐层分类 浮游植物 三维荧光光谱 光谱类别
下载PDF
Feature extraction for target identification and image classification of OMIS hyperspectral image 被引量:7
3
作者 DU Pei-jun TAN Kun SU Hong-jun 《Mining Science and Technology》 EI CAS 2009年第6期835-841,共7页
In order to combine feature extraction operations with specific hyperspectral remote sensing information processing objectives,two aspects of feature extraction were explored. Based on clustering and decision tree alg... In order to combine feature extraction operations with specific hyperspectral remote sensing information processing objectives,two aspects of feature extraction were explored. Based on clustering and decision tree algorithm,spectral absorption index (SAI),continuum-removal and derivative spectral analysis were employed to discover characterized spectral features of different targets,and decision trees for identifying a specific class and discriminating different classes were generated. By combining support vector machine (SVM) classifier with different feature extraction strategies including principal component analysis (PCA),minimum noise fraction (MNF),grouping PCA,and derivate spectral analysis,the performance of feature extraction approaches in classification was evaluated. The results show that feature extraction by PCA and derivate spectral analysis are effective to OMIS (operational modular imaging spectrometer) image classification using SVM,and SVM outperforms traditional SAM and MLC classifiers for OMIS data. 展开更多
关键词 hyperspectral remote sensing feature extraction decision tree SVM OMIS
下载PDF
Grade classification of neuroepithelial tumors using high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy and pattern recognition 被引量:5
4
作者 CHEN WenXue LOU HaiYan +9 位作者 ZHANG HongPing NIE Xiu LAN WenXian YANG YongXia XIANG Yun QI JianPin LEI Hao TANG HuiRu CHEN FenEr DENG Feng 《Science China(Life Sciences)》 SCIE CAS 2011年第7期606-616,共11页
Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-an... Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS 1H NMRS) can provide important information on tumor biology and metabolism.These metabolic fingerprints can then be used for tumor classification and grading,with great potential value for tumor diagnosis.We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies,including two astrocytomas (grade I),12 astrocytomas (grade II),eight anaplastic astrocytomas (grade III),three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS 1H NMRS.The results were correlated with pathological features using multivariate data analysis,including principal component analysis (PCA).There were significant differences in the levels of N-acetyl-aspartate (NAA),creatine,myo-inositol,glycine and lactate between tumors of different grades (P<0.05).There were also significant differences in the ratios of NAA/creatine,lactate/creatine,myo-inositol/creatine,glycine/creatine,scyllo-inositol/creatine and alanine/creatine (P<0.05).A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%.HRMAS 1H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades. 展开更多
关键词 neuroepithelial tumor grade classification high-resolution magic-angle spinning nuclear magnetic resonance (HRMASNMR) spectroscopy METABONOMICS pattern recognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部