[Objective] This research aimed to study the FTIR spectra of corn germs and endosperms so as to provide a scientific way for identifying corn of different types. [Method] The corn germs and endosperms of three types w...[Objective] This research aimed to study the FTIR spectra of corn germs and endosperms so as to provide a scientific way for identifying corn of different types. [Method] The corn germs and endosperms of three types were studied by using Fourier transform infrared spectroscopy(FTIR) technology, combined with cluster analysis. [Result] The overall characteristics of original FTIR spectra were basically similar within the range of 700-1 800 cm^-1. The FTIR spectra were mainly composed by the absorption peaks of polysaccharides, proteins and lipids. Within the wavelength range of 700-1 800 cm^-1, there were only tiny differences in original FTIR spectra among the corn germs and endosperms of three different types. The spectra were then processed by using first derivative and second derivative. The second derivative spectra were used for hierarchical cluster analysis(HCA). The results showed that with the wavelength range of 700-1 800 cm^-1, the second derivative spectra of the 52 samples could be better clustered according to the tree types and corn germ and corn endosperm. The clustering correct rate reached 96.1%.[Conclusion] FTIR technology, combined with cluster analysis, can be used to identify different types of corn germs and endosperms, and it is characterized by convenience and rapidness.展开更多
In order to deal with the unclear absorption peak caused by the absorption peak overlap of traditional Chinese medicine(TCM)and other mixtures,a method of three unsupervised clustering algorithms as K-means,K-medoids ...In order to deal with the unclear absorption peak caused by the absorption peak overlap of traditional Chinese medicine(TCM)and other mixtures,a method of three unsupervised clustering algorithms as K-means,K-medoids and Fuzzy C-means(FCM)combined with the first derivative characteristics of terahertz absorption spectrum,is proposed to perform the terahertz spectra clustering of Sanchi and other three kinds of TCM compared with their easily-confused products(ECPs).These three unsupervised clustering methods complement the scope of the supervised learning classification method.The first derivative of the spectrum could amplify the difference in the absorption coefficient with different substances,so that the obvious absorption peak can be revealed.Experiments shows that these three clustering algorithms can achieve good results by combining the origin absorption coefficient with its first-order derivative as the characteristic data,and among which K-means does the best with the accuracy of95.32%.Compared with pure absorption coefficient data clustering,the accuracy in this study has been significantly improved,especially for the non-absorption-peak TCM classification.And the accuracy of K-means algorithm is improved by5.38%.Besides,clustering algorithms in this study have strong anti-interference ability to the error data.展开更多
Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an ex...Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method.展开更多
基金Supported by National Natural Science Foundation of China(30960179)Natural Science Foundation of Yunnan Province(2007A048M)~~
文摘[Objective] This research aimed to study the FTIR spectra of corn germs and endosperms so as to provide a scientific way for identifying corn of different types. [Method] The corn germs and endosperms of three types were studied by using Fourier transform infrared spectroscopy(FTIR) technology, combined with cluster analysis. [Result] The overall characteristics of original FTIR spectra were basically similar within the range of 700-1 800 cm^-1. The FTIR spectra were mainly composed by the absorption peaks of polysaccharides, proteins and lipids. Within the wavelength range of 700-1 800 cm^-1, there were only tiny differences in original FTIR spectra among the corn germs and endosperms of three different types. The spectra were then processed by using first derivative and second derivative. The second derivative spectra were used for hierarchical cluster analysis(HCA). The results showed that with the wavelength range of 700-1 800 cm^-1, the second derivative spectra of the 52 samples could be better clustered according to the tree types and corn germ and corn endosperm. The clustering correct rate reached 96.1%.[Conclusion] FTIR technology, combined with cluster analysis, can be used to identify different types of corn germs and endosperms, and it is characterized by convenience and rapidness.
基金National Natural Science Foundation of China(No.61675151)
文摘In order to deal with the unclear absorption peak caused by the absorption peak overlap of traditional Chinese medicine(TCM)and other mixtures,a method of three unsupervised clustering algorithms as K-means,K-medoids and Fuzzy C-means(FCM)combined with the first derivative characteristics of terahertz absorption spectrum,is proposed to perform the terahertz spectra clustering of Sanchi and other three kinds of TCM compared with their easily-confused products(ECPs).These three unsupervised clustering methods complement the scope of the supervised learning classification method.The first derivative of the spectrum could amplify the difference in the absorption coefficient with different substances,so that the obvious absorption peak can be revealed.Experiments shows that these three clustering algorithms can achieve good results by combining the origin absorption coefficient with its first-order derivative as the characteristic data,and among which K-means does the best with the accuracy of95.32%.Compared with pure absorption coefficient data clustering,the accuracy in this study has been significantly improved,especially for the non-absorption-peak TCM classification.And the accuracy of K-means algorithm is improved by5.38%.Besides,clustering algorithms in this study have strong anti-interference ability to the error data.
文摘Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method.