The operation principle of a novel portable oil ingredient instrument is introduced. Using the theory of fluorescence measurement, this instrument can carry out fast and consecutive in-situ detection of oil ingredient...The operation principle of a novel portable oil ingredient instrument is introduced. Using the theory of fluorescence measurement, this instrument can carry out fast and consecutive in-situ detection of oil ingredient in sea water, confirming fast and correctly the situation of oil contamination such as the concentration and the area, etc. The lowest detectable concentration for the instrument is 1×10 -8 g/ml with the precision of less than 3 %. The results of experiment and practice show that this system has well water-sealed characteristic and repeatability.展开更多
Deleterious chlorine fluorescence was found to occur at the same frequency as the Raman scattering of 02 (1 A) and 02 (3 E), seriously affecting the 02 (1 A) yield measurement in the reaction of chlorine with ba...Deleterious chlorine fluorescence was found to occur at the same frequency as the Raman scattering of 02 (1 A) and 02 (3 E), seriously affecting the 02 (1 A) yield measurement in the reaction of chlorine with basic hydrogen peroxide by use of the Raman spectroscopy technique. To solve this problem we have taken advantage of the fact that Raman radiation is always strongly polarized while fluorescence is essentially non-polarized in a gaseous medium. When chlorine utilization of a singlet oxygen generator is 88%, 02(1A) yield reaches (42.4±7.4)% with the effect of chlorine fluorescence completely eliminated.展开更多
Using ultra high purity NaF-NaKCO3 in the Fluorescence spectrometry, determination of sub ppb levels of Uranium in the electronic materials has been achieved. The method could be applied to determination of Uranium in...Using ultra high purity NaF-NaKCO3 in the Fluorescence spectrometry, determination of sub ppb levels of Uranium in the electronic materials has been achieved. The method could be applied to determination of Uranium in any electronic materials.展开更多
文摘The operation principle of a novel portable oil ingredient instrument is introduced. Using the theory of fluorescence measurement, this instrument can carry out fast and consecutive in-situ detection of oil ingredient in sea water, confirming fast and correctly the situation of oil contamination such as the concentration and the area, etc. The lowest detectable concentration for the instrument is 1×10 -8 g/ml with the precision of less than 3 %. The results of experiment and practice show that this system has well water-sealed characteristic and repeatability.
基金This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.K2009F02) and the National Natural Science Foundation of China-Youth Science Foundation (No.20603039). The authors thank Dr. Jing Leng, Shn-yan Du, Wen-ming Tian, and Jun-hui Wang for their helpful discussions in the experiment.
文摘Deleterious chlorine fluorescence was found to occur at the same frequency as the Raman scattering of 02 (1 A) and 02 (3 E), seriously affecting the 02 (1 A) yield measurement in the reaction of chlorine with basic hydrogen peroxide by use of the Raman spectroscopy technique. To solve this problem we have taken advantage of the fact that Raman radiation is always strongly polarized while fluorescence is essentially non-polarized in a gaseous medium. When chlorine utilization of a singlet oxygen generator is 88%, 02(1A) yield reaches (42.4±7.4)% with the effect of chlorine fluorescence completely eliminated.
文摘Using ultra high purity NaF-NaKCO3 in the Fluorescence spectrometry, determination of sub ppb levels of Uranium in the electronic materials has been achieved. The method could be applied to determination of Uranium in any electronic materials.