农业遥感中,利用光谱指数方法反演作物叶绿素含量一直得到广泛地应用。利用PSR-3500光谱仪及SPAD-502叶绿素仪同步获取了冬小麦冠层光谱数据及对应叶片的叶绿素相对含量(SPAD值),并利用高斯光谱响应模型将PSR获取的地面连续光谱数据重...农业遥感中,利用光谱指数方法反演作物叶绿素含量一直得到广泛地应用。利用PSR-3500光谱仪及SPAD-502叶绿素仪同步获取了冬小麦冠层光谱数据及对应叶片的叶绿素相对含量(SPAD值),并利用高斯光谱响应模型将PSR获取的地面连续光谱数据重采样为多光谱Landsat-TM7及高光谱Hyperion光谱数据,然后分别计算基于两种传感器的归一化差值植被指数(normalized difference vegetation index,NDVI)、综合叶绿素光谱指数(MCARI/OSAVI,the ratio of the modified transformed chlorophyll absorption ratio index(MCARI)to optimized soil adjusted vegetation index(OSAVI))、三角形植被指数(triangle vegetation index,TVI)及通用植被指数(vegetation index based on universal pattern decomposition method,VIUPD),再将四种光谱指数与叶绿素含量进行回归分析。结果表明,针对重采样后的TM和Hyperion两种传感器数据,VIUPD反演叶绿素含量精度(决定系数R2)最高,反演能力最稳定,这与其"不受传感器影响"的特性密不可分;MCARI/OSAVI反演精度和稳定性次之,是因为引入的OSAVI削弱了土壤背景的影响;宽波段指数NDVI和TVI对模拟TM数据有较好的反演精度,对Hyperion数据反演精度却很低,可能是因为两种指数的构成形式简单,考虑的影响因素较少。以冬小麦为例,对利用光谱指数反演植被叶绿素含量的精度和稳定性进行了研究并分析了其影响因素,经比较发现利用植被指数VIUPD进行植被叶绿素含量反演时,其精度和稳定性最好。展开更多
Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to ...Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.展开更多
Compared with conventional cameras, spectral imagers provide many more features in the spectral do- main. They have been used in various fields such as material identification, remote sensing, precision agriculture, a...Compared with conventional cameras, spectral imagers provide many more features in the spectral do- main. They have been used in various fields such as material identification, remote sensing, precision agriculture, and surveillance. Traditional imaging spectrometers use generally scanning systems. They cannot meet the demands of dynamic scenarios. This limits the practical applications for spectral imaging. Recently, with the rapid development in computational photography theory and semiconductor techniques, spectral video acquisition has become feasible. This paper aims to offer a review of the state-of-the-art spectral imaging technologies, especially those capable of capturing spectral videos. Finally, we evaluate the performances of the existing spectral acquisition systems and discuss the trends for future work.展开更多
文摘农业遥感中,利用光谱指数方法反演作物叶绿素含量一直得到广泛地应用。利用PSR-3500光谱仪及SPAD-502叶绿素仪同步获取了冬小麦冠层光谱数据及对应叶片的叶绿素相对含量(SPAD值),并利用高斯光谱响应模型将PSR获取的地面连续光谱数据重采样为多光谱Landsat-TM7及高光谱Hyperion光谱数据,然后分别计算基于两种传感器的归一化差值植被指数(normalized difference vegetation index,NDVI)、综合叶绿素光谱指数(MCARI/OSAVI,the ratio of the modified transformed chlorophyll absorption ratio index(MCARI)to optimized soil adjusted vegetation index(OSAVI))、三角形植被指数(triangle vegetation index,TVI)及通用植被指数(vegetation index based on universal pattern decomposition method,VIUPD),再将四种光谱指数与叶绿素含量进行回归分析。结果表明,针对重采样后的TM和Hyperion两种传感器数据,VIUPD反演叶绿素含量精度(决定系数R2)最高,反演能力最稳定,这与其"不受传感器影响"的特性密不可分;MCARI/OSAVI反演精度和稳定性次之,是因为引入的OSAVI削弱了土壤背景的影响;宽波段指数NDVI和TVI对模拟TM数据有较好的反演精度,对Hyperion数据反演精度却很低,可能是因为两种指数的构成形式简单,考虑的影响因素较少。以冬小麦为例,对利用光谱指数反演植被叶绿素含量的精度和稳定性进行了研究并分析了其影响因素,经比较发现利用植被指数VIUPD进行植被叶绿素含量反演时,其精度和稳定性最好。
文摘Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.
基金Project supported by the National Natural Science Foundation of China (Nos. 61627804, 61371166, 61422107, 61571215, and 61671236) and the Natural Science Foundation of Jiangsu Province, China (Nos. BK20140610 and BK20160634)
文摘Compared with conventional cameras, spectral imagers provide many more features in the spectral do- main. They have been used in various fields such as material identification, remote sensing, precision agriculture, and surveillance. Traditional imaging spectrometers use generally scanning systems. They cannot meet the demands of dynamic scenarios. This limits the practical applications for spectral imaging. Recently, with the rapid development in computational photography theory and semiconductor techniques, spectral video acquisition has become feasible. This paper aims to offer a review of the state-of-the-art spectral imaging technologies, especially those capable of capturing spectral videos. Finally, we evaluate the performances of the existing spectral acquisition systems and discuss the trends for future work.