By utilizing optical Schlieren method, the Rayleigh Bénard Marangoni convection in mass transfer process was observed. A recorder and a camera separately recorded dynamic and static convective flow patterns dur...By utilizing optical Schlieren method, the Rayleigh Bénard Marangoni convection in mass transfer process was observed. A recorder and a camera separately recorded dynamic and static convective flow patterns during experiments . Different organic solvents were selected to investigate the RBM effects induced by different driving mechanisms including density gradient, surface tension gradient and their combination. Thermal effects produced by solvents evaporation and solute absorption/desorption are thought as an important factor in the creation of RBM convection during the mass transfer process. Qualitative analysis of experimental results is presented on the basis of photos and videotapes that were taken as direct visual evidences. Experimental results show that the thermal effect accompanying the mass transfer can be a cause at the onset of RBM convection and can′t be neglected simply in study of RBM effect driven by mass transfer.展开更多
Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C...Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C=O) of MDOP were correlated with solvent properties such as solvent acceptor number (AN) and the linear solvation energy relationships (LSER). These frequencies showed a good correlation with the solvent acceptor number (AN) and the LSER.展开更多
Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of ...Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of CO_(2) and the storage of renewable energy are realized.The reactivity and selectivity of CO_(2)RR depend on the structure and composition of the catalyst,applied potential,electrolyte,and pH of the solution.Besides,multiple electron and proton transfer steps are involved in CO_(2)RR,making the reaction pathways even more complicated.In pursuit of molecular-level insights into the CO_(2)RR processes,in situ vibrational methods including infrared,Raman and sum frequency generation spectroscopies have been deployed to monitor the dynamic evolution of catalyst structure,to identify reactive intermediates as well as to investigate the effect of local reaction environment on CO_(2)RR performance.This review summarizes key findings from recent electrochemical vibrational spectrosopic studies of CO_(2)RR in addressing the following issues:the CO_(2)RR mechanisms of different pathways,the role of surface-bound CO species,the compositional and structural effects of catalysts and electrolytes on CO_(2)RR activity and selectivity.Our perspectives on developing high sensitivity wide-frequency infrared spectroscopy,coupling different spectroelectrochemical methods and implementing operando vibrational spectroscopies to tackle the CO_(2)RR process in pilot reactors are offered at the end.展开更多
Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4...Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4) and 3-keto-lH-pyrido[3,2,1-kl]phenothiazine (PTZ5). The calculated results obtained from TDDFT suggest that the red-shifts of the absorption spectra of these two fluorophores in methanol are due to the formation of hydrogen-bonded complexes at the ground state. Four conformers of PTZ4 were obtained by TDDFT. The two fluorescence peaks of PTZ4 in tetrahydrofuran (THF) came from the ICT states of the four conformers. The fluorescence of PTZ4 in THF showed a dependence on the excitation wavelength because of butterfly bending. The excited state dynamics of PTZ4 in THF and methanol were obtained by transient absorption spectroscopy. The lifetime of the excited PTZ4 in methanol was 53.8 ps, and its relaxation from the LE state to the ICT state was completed within several picoseconds. The short lifetime of excited PTZ4 in methanol was due to the formation of out-of-plane model hydrogen bonds between PTZ4 and methanol at the excited state.展开更多
The time evolution of the linear entropy of an taking into consideration Stark shift and Kerr-like medium. atom in k-photon daynes-Cummings model is investigated The effect of both the Stark shift and Kerr-like medium...The time evolution of the linear entropy of an taking into consideration Stark shift and Kerr-like medium. atom in k-photon daynes-Cummings model is investigated The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement.展开更多
The profiling method is the first method to select in measuring the remote-sensing reflectance. In the light of the characteristics of China’s coastal waters, we develop a new method to compensate the environment’s ...The profiling method is the first method to select in measuring the remote-sensing reflectance. In the light of the characteristics of China’s coastal waters, we develop a new method to compensate the environment’s effects with the downwelling (λ)rsi r radiance’s profile and to estimate the underwater remote-sensing reflectance r. (λ)rsT he result indicates that the relative deviation of repetitious r in one station is around 10 %.展开更多
Luminescent biosensing in the second nearinfrared(NIR-II) region is featured with superior spatial resolution and high penetration depth by virtue of the suppressed scattering of long-wavelength photons. Hitherto, the...Luminescent biosensing in the second nearinfrared(NIR-II) region is featured with superior spatial resolution and high penetration depth by virtue of the suppressed scattering of long-wavelength photons. Hitherto, the reported NIR-II nanoprobes are mostly based on carbon nanotubes, organic fluorophores or semiconducting quantum dots. As an alternative, trivalent lanthanide ions(Ln3+) doped nanoparticles have been emerging as a novel class of promising nanoprobes. In this review, we highlight the recent progress in the design of highly efficient Ln3+-doped NIR-II nanoparticles towards their emerging bioapplications, with an emphasis on autofluorescence-free bioimaging, sensitive bioassay, and accurate temperature sensing. Moreover, some efforts and challenges towards this rapidly expanding field are envisioned.展开更多
Based on the optical properties of rare earth fluorescence materials, a set of fluorescence optical fiber systems was designed. The system selects the emitting LED, which is economical and practical as a light source....Based on the optical properties of rare earth fluorescence materials, a set of fluorescence optical fiber systems was designed. The system selects the emitting LED, which is economical and practical as a light source. The experiment of the emission and excitation optical spectrum, decay curve of fluorescence and residuals for several sensitive materials confirms the match of Y2O2S:Eu using the light source and the feasibility of the system. The rare earth material Y2O2S:Eu is selected as the material candidate for being the most sensitive.展开更多
The influence of water permeates almost all areas including biochemistry,chemistry,physics and is particularly evident in phenomena occurring at the interfaces of solid surface such as SiC nanocrystals,which are promi...The influence of water permeates almost all areas including biochemistry,chemistry,physics and is particularly evident in phenomena occurring at the interfaces of solid surface such as SiC nanocrystals,which are promising nanomaterials and exhibit unique surface chemical properties.In this paper,the quantum confinement effect and stability of 3C-SiC nanocrystals in aqueous solution as well as photoluminescence properties in water suspensions with different pH values are reviewed based on design and analysis of surface structures.On this basis,the significant progress of 3C-SiC nanocrystals in efficiently splitting water into usable hydrogen is summarized and the relative mechanisms are described.In addition,the water-soluble 3C-SiC quantum dots as robust and nontoxic biological probes and labels also are introduced as well as future prospects given.展开更多
Band gap, which can be tuned by changing the size of quantum dots (QDs) based on the quantum confinement effect, plays a fundamental role in electrical and optical properties of QDs. However, the tuning of the band ga...Band gap, which can be tuned by changing the size of quantum dots (QDs) based on the quantum confinement effect, plays a fundamental role in electrical and optical properties of QDs. However, the tuning of the band gap by changing the size results in a series of intrinsic problems, such as the instability of the extremely small QDs, negative combination with biomolecules because of the large size of QDs, etc. Recently, several new methods have been developed to further study and improve the tuning of the band gap. In this paper, we summarized the recent progress in the fields of tuning the band gap of QDs, including alloyed QDs, core-shell QDs and doped QDs. The review has also prospected the development trend of tuning the band gap as well as their applications.展开更多
Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the rece...Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the recent advances for organic micro/nanocrystals from the perspective of molecule aggregation mode,morphology modulation,and optical property modulation are reviewed.The stacking mode and the intermolecular interaction depend on the molecular structure,which eventually determines the morphology of organic micro/nanocrystals.The morphologies of the organic micro/nanocrystals make the aggregates exhibit photon confinement or light-guiding properties as organic miniaturized optoelectronic devices.In this review,we conclude with a summary and put forward our perspective on the current challenges and the future development of morphology and optical tunable direction for the organic micro/nanocrystals.展开更多
Mixed-valence manganites have attracted considerable research focus in recent years not only because of the potential application of colossal magnetoresistance(CMR) in magnetic devices,but also because of many intrigu...Mixed-valence manganites have attracted considerable research focus in recent years not only because of the potential application of colossal magnetoresistance(CMR) in magnetic devices,but also because of many intriguing physical properties observed in these materials.Doping elements at A-site can alter the filling of 3d Mn band and the tolerance factor.Therefore the hole-and electron-doped CMR manganites exhibit a rich phase diagram.In addition,more theoretical and experimental results suggest that phase separation is a critical factor for the understanding of CMR phenomena.Recently,there is an increasing interest in the fabrication and investigation on manganite-based heterojunction,which demonstrated excellent rectifying property,large MR,and photovoltaic effect.展开更多
文摘By utilizing optical Schlieren method, the Rayleigh Bénard Marangoni convection in mass transfer process was observed. A recorder and a camera separately recorded dynamic and static convective flow patterns during experiments . Different organic solvents were selected to investigate the RBM effects induced by different driving mechanisms including density gradient, surface tension gradient and their combination. Thermal effects produced by solvents evaporation and solute absorption/desorption are thought as an important factor in the creation of RBM convection during the mass transfer process. Qualitative analysis of experimental results is presented on the basis of photos and videotapes that were taken as direct visual evidences. Experimental results show that the thermal effect accompanying the mass transfer can be a cause at the onset of RBM convection and can′t be neglected simply in study of RBM effect driven by mass transfer.
文摘Infrared spectroscopy studies of 2 methyl 4,5 dimethoxy 3 oxo 2H pyridizine (MDOP) in 12 pure organic solvents were undertaken to investigate the solvent solute interactions. The frequencies of the carbonyl (C=O) of MDOP were correlated with solvent properties such as solvent acceptor number (AN) and the linear solvation energy relationships (LSER). These frequencies showed a good correlation with the solvent acceptor number (AN) and the LSER.
文摘Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of CO_(2) and the storage of renewable energy are realized.The reactivity and selectivity of CO_(2)RR depend on the structure and composition of the catalyst,applied potential,electrolyte,and pH of the solution.Besides,multiple electron and proton transfer steps are involved in CO_(2)RR,making the reaction pathways even more complicated.In pursuit of molecular-level insights into the CO_(2)RR processes,in situ vibrational methods including infrared,Raman and sum frequency generation spectroscopies have been deployed to monitor the dynamic evolution of catalyst structure,to identify reactive intermediates as well as to investigate the effect of local reaction environment on CO_(2)RR performance.This review summarizes key findings from recent electrochemical vibrational spectrosopic studies of CO_(2)RR in addressing the following issues:the CO_(2)RR mechanisms of different pathways,the role of surface-bound CO species,the compositional and structural effects of catalysts and electrolytes on CO_(2)RR activity and selectivity.Our perspectives on developing high sensitivity wide-frequency infrared spectroscopy,coupling different spectroelectrochemical methods and implementing operando vibrational spectroscopies to tackle the CO_(2)RR process in pilot reactors are offered at the end.
文摘Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-lH- pyrido[3,2,1-kl]phenothiazine (PTZ4) and 3-keto-lH-pyrido[3,2,1-kl]phenothiazine (PTZ5). The calculated results obtained from TDDFT suggest that the red-shifts of the absorption spectra of these two fluorophores in methanol are due to the formation of hydrogen-bonded complexes at the ground state. Four conformers of PTZ4 were obtained by TDDFT. The two fluorescence peaks of PTZ4 in tetrahydrofuran (THF) came from the ICT states of the four conformers. The fluorescence of PTZ4 in THF showed a dependence on the excitation wavelength because of butterfly bending. The excited state dynamics of PTZ4 in THF and methanol were obtained by transient absorption spectroscopy. The lifetime of the excited PTZ4 in methanol was 53.8 ps, and its relaxation from the LE state to the ICT state was completed within several picoseconds. The short lifetime of excited PTZ4 in methanol was due to the formation of out-of-plane model hydrogen bonds between PTZ4 and methanol at the excited state.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10674038, 10604042National Basic Research Program of China under Grant No. 2006CB302901
文摘The time evolution of the linear entropy of an taking into consideration Stark shift and Kerr-like medium. atom in k-photon daynes-Cummings model is investigated The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement.
文摘The profiling method is the first method to select in measuring the remote-sensing reflectance. In the light of the characteristics of China’s coastal waters, we develop a new method to compensate the environment’s effects with the downwelling (λ)rsi r radiance’s profile and to estimate the underwater remote-sensing reflectance r. (λ)rsT he result indicates that the relative deviation of repetitious r in one station is around 10 %.
基金supported by the Strategic Priority Research Program of the CAS(XDB20000000)the National Natural Science Foundation of China(21771185,11704380,51672272,21804134and U1805252)+1 种基金the CAS/SAFEA International Partnership Program for Creative Research Teamsthe Natural Science Foundation of Fujian Province(2017I0018)
文摘Luminescent biosensing in the second nearinfrared(NIR-II) region is featured with superior spatial resolution and high penetration depth by virtue of the suppressed scattering of long-wavelength photons. Hitherto, the reported NIR-II nanoprobes are mostly based on carbon nanotubes, organic fluorophores or semiconducting quantum dots. As an alternative, trivalent lanthanide ions(Ln3+) doped nanoparticles have been emerging as a novel class of promising nanoprobes. In this review, we highlight the recent progress in the design of highly efficient Ln3+-doped NIR-II nanoparticles towards their emerging bioapplications, with an emphasis on autofluorescence-free bioimaging, sensitive bioassay, and accurate temperature sensing. Moreover, some efforts and challenges towards this rapidly expanding field are envisioned.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50775198, 60102002, 60974115 and 60977061)the Youth Foundation of Education Bureau of Hebei Province (Grant No.2011225)
文摘Based on the optical properties of rare earth fluorescence materials, a set of fluorescence optical fiber systems was designed. The system selects the emitting LED, which is economical and practical as a light source. The experiment of the emission and excitation optical spectrum, decay curve of fluorescence and residuals for several sensitive materials confirms the match of Y2O2S:Eu using the light source and the feasibility of the system. The rare earth material Y2O2S:Eu is selected as the material candidate for being the most sensitive.
基金supported by the National Basic Research Programs of China(Grant Nos.2011CB922102 and 2013CB932901)the National Natural Science Foundation of China(Grant No.11374141)the Natural Science Foundation of Higher Education of Jiangsu(Grant No.12KJB140007)
文摘The influence of water permeates almost all areas including biochemistry,chemistry,physics and is particularly evident in phenomena occurring at the interfaces of solid surface such as SiC nanocrystals,which are promising nanomaterials and exhibit unique surface chemical properties.In this paper,the quantum confinement effect and stability of 3C-SiC nanocrystals in aqueous solution as well as photoluminescence properties in water suspensions with different pH values are reviewed based on design and analysis of surface structures.On this basis,the significant progress of 3C-SiC nanocrystals in efficiently splitting water into usable hydrogen is summarized and the relative mechanisms are described.In addition,the water-soluble 3C-SiC quantum dots as robust and nontoxic biological probes and labels also are introduced as well as future prospects given.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51073115, 51003072, 51173127, 51011140072)the National Basic Research Program of China ("973" Program) (Grant No. 2010CB934700)the Natural Science Foundation of Tianjin City (Grant No. 10JCZDJC22400)
文摘Band gap, which can be tuned by changing the size of quantum dots (QDs) based on the quantum confinement effect, plays a fundamental role in electrical and optical properties of QDs. However, the tuning of the band gap by changing the size results in a series of intrinsic problems, such as the instability of the extremely small QDs, negative combination with biomolecules because of the large size of QDs, etc. Recently, several new methods have been developed to further study and improve the tuning of the band gap. In this paper, we summarized the recent progress in the fields of tuning the band gap of QDs, including alloyed QDs, core-shell QDs and doped QDs. The review has also prospected the development trend of tuning the band gap as well as their applications.
基金supported by the National Natural Science Foundation of China(21971185)the Collaborative Innovation Center of Suzhou Nano Science and Technology(CIC-Nano)the"111"Project of The State Administration of Foreign Experts Affairs of China。
文摘Organic micro/nanocrystals based on small organic molecules have drawn extensive attention due to their potential application in organic field-effect transistors,electrochemical sensors,solar cells,etc.Herein,the recent advances for organic micro/nanocrystals from the perspective of molecule aggregation mode,morphology modulation,and optical property modulation are reviewed.The stacking mode and the intermolecular interaction depend on the molecular structure,which eventually determines the morphology of organic micro/nanocrystals.The morphologies of the organic micro/nanocrystals make the aggregates exhibit photon confinement or light-guiding properties as organic miniaturized optoelectronic devices.In this review,we conclude with a summary and put forward our perspective on the current challenges and the future development of morphology and optical tunable direction for the organic micro/nanocrystals.
基金supported by the National Natural Science Foundation of China(Grant Nos.10774146,10974205,10904150 and 11274313)Anhui Provincial Natural Science Foundation(Grant No.1208085MA06)+1 种基金Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences' Large-scale Scientific Facility(Grant No. U1232138)support by the National Key Basic Research(Grant No. 2011CBA00111)
文摘Mixed-valence manganites have attracted considerable research focus in recent years not only because of the potential application of colossal magnetoresistance(CMR) in magnetic devices,but also because of many intriguing physical properties observed in these materials.Doping elements at A-site can alter the filling of 3d Mn band and the tolerance factor.Therefore the hole-and electron-doped CMR manganites exhibit a rich phase diagram.In addition,more theoretical and experimental results suggest that phase separation is a critical factor for the understanding of CMR phenomena.Recently,there is an increasing interest in the fabrication and investigation on manganite-based heterojunction,which demonstrated excellent rectifying property,large MR,and photovoltaic effect.