The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of ...The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of CO_(2) photoreduction remains generally low due to the challenging activation of CO_(2) and the limited light absorption and separation of charge.Defect engineering of catalysts rep-resents a pivotal strategy to enhance the photocatalytic activity for CO_(2),with most research on met-al oxide catalysts focusing on the creation of anionic vacancies.The exploration of metal vacancies and their effects,however,is still underexplored.In this study,we prepared an In2O3 catalyst with indium vacancies(VIn)through defect engineering for CO_(2) photoreduction.Experimental and theo-retical calculations results demonstrate that VIn not only facilitate light absorption and charge sepa-ration in the catalyst but also enhance CO_(2) adsorption and reduce the energy barrier for the for-mation of the key intermediate*COOH during CO_(2) reduction.Through metal vacancy engineering,the activity of the catalyst was 7.4 times,reaching an outstanding rate of 841.32μmol g(-1)h^(-1).This work unveils the mechanism of metal vacancies in CO_(2) photoreduction and provides theoretical guidance for the development of novel CO_(2) photoreduction catalysts.展开更多
The stems of water convolvulus were employed as biotemplates for the replication of their optimized 3D hierarchical architecture to synthesize porous MgO-modified TiO2 . The photocatalytic reduction of CO2 with H2O va...The stems of water convolvulus were employed as biotemplates for the replication of their optimized 3D hierarchical architecture to synthesize porous MgO-modified TiO2 . The photocatalytic reduction of CO2 with H2O vapor into hydrocarbon fuel was studied with these MgO-TiO2 nanostructures as the photocatalysts with the benefits of improved CO2 adsorption and activation through incorporated MgO. Various factors involving CO2 adsorption capacity, migration of charge carriers to the surface, and the number of activity sites, which depend on the amount of added MgO, determine the photocatalytic conversion efficiency.展开更多
A photocatalyst composed of TiO 2 nanotube arrays(TNTs) and octahedral Cu2 O nanoparticles was fabricated,and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was ...A photocatalyst composed of TiO 2 nanotube arrays(TNTs) and octahedral Cu2 O nanoparticles was fabricated,and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was studied. The average nanotube diameter and length was 100 nm and 5 μm,respectively. The different amount of octahedral Cu2 O modified TNTs were obtained by varying electrochemical deposition time. TNTs modified with an optimized amount of Cu2 O nanoparticles exhibited high efficiency in the photocatalysis,and the predominant hydrocarbon product was methane. The methane yield increased with increasing Cu2 O content of the catalyst up to a certain deposition time,and decreased with further increase in Cu2 O deposition time. Insufficient deposition time(5 min) resulted in a small amount of Cu2 O nanoparticles on the TNTs,leading to the disadvantage of harvesting light. However,excess deposition time(45 min) gave rise to entire TNT surface being most covered with Cu2 O nanoparticles with large sizes,inconvenient for the transport of photo-generated carriers. The highest methane yield under simulated solar and visible light irradiation was observed for the catalysts prepared at a Cu2 O deposition time of 15 and 30 min respectively. The morphology,crystallization,photoresponse and electrochemical properties of the catalyst were characterized to understand the mechanism of its high photocatalytic activity. The TNT structure provided abundant active sites for the adsorption of reactants,and promoted the transport of photogenerated carriers that improved charge separation. Modifying the TNTs with octahedral Cu2 O nanoparticles promoted light absorption,and prevented the hydrocarbon product from oxidation. These factors provided the Cu2O-modified TNT photocatalyst with high efficiency in the reduction of CO2,without requiring co-catalysts or sacrificial agents.展开更多
A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in th...A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction.展开更多
TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the...TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.展开更多
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemic...As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.展开更多
This paper investigates the properties of TiO2‐based photocatalysts synthesised under supercriticalconditions.Specifically,the characteristics of Pt dispersed on TiO2catalysts obtained in supercriticalCO2are discusse...This paper investigates the properties of TiO2‐based photocatalysts synthesised under supercriticalconditions.Specifically,the characteristics of Pt dispersed on TiO2catalysts obtained in supercriticalCO2are discussed and compared with those of commercial TiO2.The photocatalytic activity of thesynthesised catalysts in the CO2photoreduction reaction to produce solar fuel is tested.The mainconclusion of the study is that photocatalysts with better or similar features,including high surfacearea,crystallisation degree,hydroxyl surface concentration,pore volume,absorbance in the visiblerange and methane production rate,to those of commercial TiO2may be produced for the reductionof CO2to fuel by synthesis in supercritical media.展开更多
Photo-thermal CO_(2) reduction with methane(CRM)is beneficial for solar energy harvesting and energy storage.The search for efficient photo-thermal catalysts is of great significance.Here,we reveal that group Ⅷ metal...Photo-thermal CO_(2) reduction with methane(CRM)is beneficial for solar energy harvesting and energy storage.The search for efficient photo-thermal catalysts is of great significance.Here,we reveal that group Ⅷ metal catalysts supported by optical material WO_(3) are more effective for photo-thermal CRM,giving catalytic activities with visible light assistance that are 1.4-2.4 times higher than that achieved under thermal conditions.The activity enhancement(1.4-2.4 times)was comparable to that achieved with plasmonic-Au-promoted catalysts(1.7 times).Characterization results indicated that WO_(3) was partially reduced to WO_(3-x) in situ under the reductive CRM reaction atmosphere,and that WO_(3-x) rather than WO_(3) enhanced the activities with visible light assistance.Our method provides a promising approach for improving the activity of catalysts under light irradiation.展开更多
The conversion of CO2 and water to value-added chemicals under sunlight irradiation, especially by photoelectrocatalytic reduction process, is always a dream for human beings. A new artificial photosynthesis system co...The conversion of CO2 and water to value-added chemicals under sunlight irradiation, especially by photoelectrocatalytic reduction process, is always a dream for human beings. A new artificial photosynthesis system composed of a metalloporphyrin-functionalized TiO2 photocathode and BiVO4 photoanode can efficiently transform CO2 and water to methanol, which is accompanied by oxygen release. This photoelectrocatalytic system smoothly produces methanol at a rate of 55.5 μM h^–1 cm^– 2, with 0.6 V being the membrane voltage in plants. The production of hydrogen can also be observed when the voltage is more than 0.75 V, due to photocatalysis. Our results evidently indicate that the molecules of metalloporphyrin attached onto the surface of anatase (TiO2) behave as chlorophyll, NADP, and Calvin cycle in plant cells.展开更多
Splitting water or reducing CO_(2) via semiconductor photocatalysis to produce H2 or hydrocarbon fuels through the direct utilization of solar energy is a promising approach to mitigating the current fossil fuel energ...Splitting water or reducing CO_(2) via semiconductor photocatalysis to produce H2 or hydrocarbon fuels through the direct utilization of solar energy is a promising approach to mitigating the current fossil fuel energy crisis and environmental challenges.It enables not only the realization of clean,renewable,and high-heating-value solar fuels,but also the reduction of CO_(2) emissions.Layered double hydroxides(LDHs)are a type of two-dimensional anionic clay with a brucite-like structure,and are characterized by a unique,delaminable,multidimensional,layered structure;tunable intralayer metal cations;and exchangeable interlayer guest anions.Therefore,it has been widely investigated in the fields of CO_(2) reduction,photoelectrocatalytic water oxidation,and water photolysis to produce H2.However,the low carrier mobility and poor quantum efficiency of pure LDH limit its application.An increasing number of scholars are exploring methods to obtain LDH-based photocatalysts with high energy conversion efficiency,such as assembling photoactive components into LDH laminates,designing multidimensional structures,or coupling different types of semiconductors to construct heterojunctions.This review first summarizes the main characteristics of LDH,i.e.,metal-cation tunability,intercalated guest-anion substitutability,thermal decomposability,memory effect,multidimensionality,and delaminability.Second,LDHs,LDH-based composites(metal sulfide-LDH composites,metal oxide-LDH composites,graphite phase carbon nitride-LDH composites),ternary LDH-based composites,and mixed-metal oxides for splitting water to produce H_(2) are reviewed.Third,graphite phase carbon nitride-LDH composites,MgAl-LDH composites,CuZn-LDH composites,and other semiconductor-LDH composites for CO_(2) reduction are introduced.Although the field of LDH-based photocatalysts has advanced considerably,the photocatalytic mechanism of LDHs has not been thoroughly elucidated;moreover,the photocatalytic active sites,the synergy between different components,and the interfacial reaction mechanism of LDH-based photocatalysts require further investigation.Therefore,LDH composite materials for photocatalysis could be developed through structural regulation and function-oriented design to investigate the effects of different components and interface reactions,the influence of photogenerated carriers,and the impact of material composition on the physical and chemical properties of the LDH-based photocatalyst.展开更多
Solar-powered carbon dioxide (CO_2)-to-fuel conversion presents itself as an ideal solution for both CO_2 mit- igation and the rapidly growing world energy demand. In this work, the heating effect of light irradiati...Solar-powered carbon dioxide (CO_2)-to-fuel conversion presents itself as an ideal solution for both CO_2 mit- igation and the rapidly growing world energy demand. In this work, the heating effect of light irradiation onto a bed of supported nickel (Ni) catalyst was utilized to facilitate CO_2 conversion. Ceria (CeO_2)-titania (TiO_2) oxide supports of different compositions were employed and their effects on photothermal CO_2 conver- sion examined, Two factors are shown to be crucial for instigating photothermal CO_2 methanation activity: ① Fine nickel deposits are required for both higher active catalyst area and greater light absorption capacity for the initial heating of the catalyst bed; and ② the presence of defect sites on the support are necessary to promote adsorption of C02 for its subsequent activation, Titania inclusion within the support plays a crucial role in maintaining the oxygen vacancy defect sites on the (titanium-doped) cerium oxide. The combination of elevated light absorption and stabilized reduced states for CO_2 adsorption subsequently invokes effective Dhotothermal CO_2 methanation when the ceria and titania are blended in the ideal ratio(s).展开更多
Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nan...Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nanorod arrays(NRAs)with enhanced photocatalytic activity and photostability for CO2 reduction under visible light irradiation.ZnO NRA/C-x(x=005,01,02,and 03)nanohybrids are prepared by calcining pre-synthesized ZnO NRAs with different amounts of glucose(0.05,0.1,0.2,and 0.3 g)as a carbon source via a hydrothermal method.X-ray photoelectron spectroscopy reveals that the obtained ZnO NRA/C-x nanohybrids are imparted with the effects of both carbon doping and carbon coating,as evidenced by the detected C-O-Zn bond and the C-C,C-O and C=O bonds,respectively.While the basic structure of ZnO remains unchanged,the UV-Vis absorption spectra show increased absorbance owing to the carbon doping effect in the ZnO NRA/C-x nanohybrids.The photoluminescence(PL)intensities of ZnO NRA/C-x nanohybrids are lower than that of bare ZnO NRA,indicating that the graphitic carbon layer coated on the surface of the ZnO NRA significantly enhances the charge carrier separation and transport,which in turn enhances the photoelectrochemical property and photocatalytic activity of the ZnO NRA/C-x nanohybrids for CO2 reduction.More importantly,a long-term reaction of photocatalytic CO2 reduction demonstrates that the photostability of ZnO NRA/C-x nanohybrids is significantly increased in comparison with the bare ZnO NRA.展开更多
Constructed by selecting appropriate building blocks,covalent organic frameworks(COFs)can be endowed with a variety of specific functions.Herein,we successfully synthesized an imine‐linked H_(2)PReBpy‐COF with the C...Constructed by selecting appropriate building blocks,covalent organic frameworks(COFs)can be endowed with a variety of specific functions.Herein,we successfully synthesized an imine‐linked H_(2)PReBpy‐COF with the CO_(2) reduction catalyst[ReI(bpy)(CO)_(3)Cl]and the porphyrin photosensitizer as the monomeric building units.The light‐harvesting properties of the porphyrin itself,augmented by the extendedπ‐conjugated planar structure of 2D COF,enable H_(2)PReBpy‐COF the excellent light‐harvesting capability,efficient charge separation,and fast interfacial charge transfer.In addition,a large amount of uniformly distributed[ReI(bpy)(CO)_(3)Cl]units offer H_(2)PReBpy‐COF an excellent activity toward photocatalytic CO_(2) reduction with moderate selectivity and reusability.This study demonstrated a proof of concept in which the advantages of COFs and functional monomers are rationally integrated for photocatalytic solar fuel conversion.展开更多
Photocatalytic carbon dioxide reduction reaction(CO_(2)RR)has been considered as one of most effective ways to solve the current energy crisis and environmental problems.However,the practical application of photocatal...Photocatalytic carbon dioxide reduction reaction(CO_(2)RR)has been considered as one of most effective ways to solve the current energy crisis and environmental problems.However,the practical application of photocatalytic CO_(2)RR is largely hindered by lock of efficient catalyst.Here,hierarchical titanium dioxide(TiO_(2))nanostructures with a highly active{001}surface were successfully synthesized by a facile approach from metal Ti powders.The obtained hierarchical TiO_(2)nanostructures were composed of TiO_(2)nanorods,which have a diameter about 5–10 nm and a length of several micrometers.It is found that these nanorods have exposed{001}facets.On the other hand,these hierarchical TiO_(2)nanostructures have a good light-harvesting efficiency with the help of TiO_(2)nanorods component and large specific surface area.Therefore,these hierarchical TiO_(2)nanostructures exhibit a much better activity for photocatalytic CO_(2)reduction than that of commercial TiO_(2)(P25).This high activity can be attributed to the synergistic effects of active surface,efficient charge transfer along nanorods and good light harvesting in the nanorod-hierarchical nanostructures.展开更多
Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises.The loading of noble-metal co-catalysts can substantially ...Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises.The loading of noble-metal co-catalysts can substantially improve the photocatalytic efficiency of semiconductors.Because the high cost and scarcity of noble metals markedly limit their large-scale applications,finding a noble-metal-alternative co-catalyst is crucial.MXene,a novel 2D transition metal material,has attracted considerable attention as a promising substitute for noble metal co-catalysts owing to its cost-efficiency,unique 2D layered structure,and excellent electrical,optical,and thermodynamic properties.This review focuses on the latest advancements in research on MXenes as co-catalysts in relatively popular photocatalytic applications(hydrogen production,CO2 reduction,nitrogen fixation,and organic pollutant oxidation).The synthesis methods and photocatalytic mechanisms of MXenes as co-catalysts are also summarized according to the type of MXene-based material.Finally,the crucial opportunities and challenges in the prospective development of MXene-based photocatalysts are outlined.We emphasize that modern techniques should be used to demonstrate the effects of MXenes on photocatalysis and that the photocatalytic activity of MXene-based photocatalysts can be further improved using defective engineering and recent phenomena such as the localized surface plasmon resonance effect and single-atom catalysis.展开更多
To address the environmental and health hazards of nitrate(NO_(3)^(-))in water,a denitrification advanced reduction process(ARP)using only formic acid(HCOOH)activated by ultraviolet(UV)light was proposed.The efficienc...To address the environmental and health hazards of nitrate(NO_(3)^(-))in water,a denitrification advanced reduction process(ARP)using only formic acid(HCOOH)activated by ultraviolet(UV)light was proposed.The efficiency,influencing factors,mechanism,and kinetics of the reduction were investigated through component analysis and radical detection.Results show that,after 90 min of UV illumination,the reduction and gas conversion ratios of 50 mg/L NO_(3)^(-)-N reach 99.9%and 99.8%,respectively,under 9 mM of C_(0)(HCOOH),pH=3.0,and N_(2) aeration.Meanwhile,96.7%of HCOOH is consumed and converted into gas.The NO_(3)^(-)-N conversion process includes the transformation to NO_(2)^(-)-N,followed by a further reduction to gas and a direct conversion into gas,introducing small amounts of nitrite and ammonia.The carbon dioxide anion radical(·CO_(2)^(-))from HCOOH/HCOO^(-)is the principal cause of NO_(3)^(-)-N reduction by UV/HCOOH/N 2 ARP.In contrast,·CO_(2)^(-)production is caused by the hydroxyl radical(·OH).The NO_(3)^(-)-N reduction efficiency is enhanced by the increase in the light intensity,considerably affected by the initial pH,and less affected by inorganic anions,including Cl^(-),H_(2)PO_(4)^(-),and HCO_(3)^(-)/CO_(3)^(2-).The initial HCOOH concentration and light intensity are the main factors that influence the NO_(3)^(-)-N reduction rate.展开更多
文摘The photoreduction of greenhouse gas CO_(2) using photocatalytic technologies not only benefits en-vironmental remediation but also facilitates the production of raw materials for chemicals.Howev-er,the efficiency of CO_(2) photoreduction remains generally low due to the challenging activation of CO_(2) and the limited light absorption and separation of charge.Defect engineering of catalysts rep-resents a pivotal strategy to enhance the photocatalytic activity for CO_(2),with most research on met-al oxide catalysts focusing on the creation of anionic vacancies.The exploration of metal vacancies and their effects,however,is still underexplored.In this study,we prepared an In2O3 catalyst with indium vacancies(VIn)through defect engineering for CO_(2) photoreduction.Experimental and theo-retical calculations results demonstrate that VIn not only facilitate light absorption and charge sepa-ration in the catalyst but also enhance CO_(2) adsorption and reduce the energy barrier for the for-mation of the key intermediate*COOH during CO_(2) reduction.Through metal vacancy engineering,the activity of the catalyst was 7.4 times,reaching an outstanding rate of 841.32μmol g(-1)h^(-1).This work unveils the mechanism of metal vacancies in CO_(2) photoreduction and provides theoretical guidance for the development of novel CO_(2) photoreduction catalysts.
基金supported by the National Basic Research Program of China(973 Program,2014CB239302,2013CB632404)the Natural Science Foundation of Jiangsu Province(BK20130053)the National Natural Science Foundation of China(51272101,51202005,21473091)
文摘The stems of water convolvulus were employed as biotemplates for the replication of their optimized 3D hierarchical architecture to synthesize porous MgO-modified TiO2 . The photocatalytic reduction of CO2 with H2O vapor into hydrocarbon fuel was studied with these MgO-TiO2 nanostructures as the photocatalysts with the benefits of improved CO2 adsorption and activation through incorporated MgO. Various factors involving CO2 adsorption capacity, migration of charge carriers to the surface, and the number of activity sites, which depend on the amount of added MgO, determine the photocatalytic conversion efficiency.
基金supported by the National Natural Science Foundation of China(2137704421573085)+5 种基金the Key Project of Natural Science Foundation of Hubei Province(2015CFA037)Wuhan Planning Project of Science and Technology(2014010101010023)Self-determined Research Funds of CCNU from the Colleges’Basic Research and Operation of MOE(CCNU15ZD007CCNU15KFY005)China Postdoctoral Science Foundation(2015M572187)Hubei Provincial Department of Education(D20152702)~~
文摘A photocatalyst composed of TiO 2 nanotube arrays(TNTs) and octahedral Cu2 O nanoparticles was fabricated,and its performance in the photocatalytic reduction of CO2 under visible and simulated solar irradiation was studied. The average nanotube diameter and length was 100 nm and 5 μm,respectively. The different amount of octahedral Cu2 O modified TNTs were obtained by varying electrochemical deposition time. TNTs modified with an optimized amount of Cu2 O nanoparticles exhibited high efficiency in the photocatalysis,and the predominant hydrocarbon product was methane. The methane yield increased with increasing Cu2 O content of the catalyst up to a certain deposition time,and decreased with further increase in Cu2 O deposition time. Insufficient deposition time(5 min) resulted in a small amount of Cu2 O nanoparticles on the TNTs,leading to the disadvantage of harvesting light. However,excess deposition time(45 min) gave rise to entire TNT surface being most covered with Cu2 O nanoparticles with large sizes,inconvenient for the transport of photo-generated carriers. The highest methane yield under simulated solar and visible light irradiation was observed for the catalysts prepared at a Cu2 O deposition time of 15 and 30 min respectively. The morphology,crystallization,photoresponse and electrochemical properties of the catalyst were characterized to understand the mechanism of its high photocatalytic activity. The TNT structure provided abundant active sites for the adsorption of reactants,and promoted the transport of photogenerated carriers that improved charge separation. Modifying the TNTs with octahedral Cu2 O nanoparticles promoted light absorption,and prevented the hydrocarbon product from oxidation. These factors provided the Cu2O-modified TNT photocatalyst with high efficiency in the reduction of CO2,without requiring co-catalysts or sacrificial agents.
基金supported by the National Natural Science Foundation of China(21871079,21501052)the Outstanding Youth Project of Natural Science Foundation of Heilongjiang Province(YQ2019B006)~~
文摘A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction.
基金supported by the National Natural Science Foundation of China(51602207,21433007,51320105001,21573170)the Self-determined and Innovative Research Funds of SKLWUT(2017-ZD-4,2016-KF-17)the Natural Science Foundation of Hubei Province of China(2015CFA001)~~
文摘TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.
基金supported by Xiamen University Malaysia Research Fund (XMUMRF/2019-C3/IENG/0013)financial assistance and faculty start-up grants/supports from Xiamen University~~
文摘As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.
基金supported by Spanish Government (Project CTM 2011-26564)Regional Government of Castilla-La Mancha (Project PEII10-0310-5840)Iberdrola Foundation (Research Grant in Energy and the Environment 2010/12 for Susana Tostón)~~
文摘This paper investigates the properties of TiO2‐based photocatalysts synthesised under supercriticalconditions.Specifically,the characteristics of Pt dispersed on TiO2catalysts obtained in supercriticalCO2are discussed and compared with those of commercial TiO2.The photocatalytic activity of thesynthesised catalysts in the CO2photoreduction reaction to produce solar fuel is tested.The mainconclusion of the study is that photocatalysts with better or similar features,including high surfacearea,crystallisation degree,hydroxyl surface concentration,pore volume,absorbance in the visiblerange and methane production rate,to those of commercial TiO2may be produced for the reductionof CO2to fuel by synthesis in supercritical media.
文摘Photo-thermal CO_(2) reduction with methane(CRM)is beneficial for solar energy harvesting and energy storage.The search for efficient photo-thermal catalysts is of great significance.Here,we reveal that group Ⅷ metal catalysts supported by optical material WO_(3) are more effective for photo-thermal CRM,giving catalytic activities with visible light assistance that are 1.4-2.4 times higher than that achieved under thermal conditions.The activity enhancement(1.4-2.4 times)was comparable to that achieved with plasmonic-Au-promoted catalysts(1.7 times).Characterization results indicated that WO_(3) was partially reduced to WO_(3-x) in situ under the reductive CRM reaction atmosphere,and that WO_(3-x) rather than WO_(3) enhanced the activities with visible light assistance.Our method provides a promising approach for improving the activity of catalysts under light irradiation.
基金funded by the Natural Science Foundation of Gansu Province(17JR5RA212)the State Key Laboratory of Coal Conversion(J19-20-913-1)~~
文摘The conversion of CO2 and water to value-added chemicals under sunlight irradiation, especially by photoelectrocatalytic reduction process, is always a dream for human beings. A new artificial photosynthesis system composed of a metalloporphyrin-functionalized TiO2 photocathode and BiVO4 photoanode can efficiently transform CO2 and water to methanol, which is accompanied by oxygen release. This photoelectrocatalytic system smoothly produces methanol at a rate of 55.5 μM h^–1 cm^– 2, with 0.6 V being the membrane voltage in plants. The production of hydrogen can also be observed when the voltage is more than 0.75 V, due to photocatalysis. Our results evidently indicate that the molecules of metalloporphyrin attached onto the surface of anatase (TiO2) behave as chlorophyll, NADP, and Calvin cycle in plant cells.
文摘Splitting water or reducing CO_(2) via semiconductor photocatalysis to produce H2 or hydrocarbon fuels through the direct utilization of solar energy is a promising approach to mitigating the current fossil fuel energy crisis and environmental challenges.It enables not only the realization of clean,renewable,and high-heating-value solar fuels,but also the reduction of CO_(2) emissions.Layered double hydroxides(LDHs)are a type of two-dimensional anionic clay with a brucite-like structure,and are characterized by a unique,delaminable,multidimensional,layered structure;tunable intralayer metal cations;and exchangeable interlayer guest anions.Therefore,it has been widely investigated in the fields of CO_(2) reduction,photoelectrocatalytic water oxidation,and water photolysis to produce H2.However,the low carrier mobility and poor quantum efficiency of pure LDH limit its application.An increasing number of scholars are exploring methods to obtain LDH-based photocatalysts with high energy conversion efficiency,such as assembling photoactive components into LDH laminates,designing multidimensional structures,or coupling different types of semiconductors to construct heterojunctions.This review first summarizes the main characteristics of LDH,i.e.,metal-cation tunability,intercalated guest-anion substitutability,thermal decomposability,memory effect,multidimensionality,and delaminability.Second,LDHs,LDH-based composites(metal sulfide-LDH composites,metal oxide-LDH composites,graphite phase carbon nitride-LDH composites),ternary LDH-based composites,and mixed-metal oxides for splitting water to produce H_(2) are reviewed.Third,graphite phase carbon nitride-LDH composites,MgAl-LDH composites,CuZn-LDH composites,and other semiconductor-LDH composites for CO_(2) reduction are introduced.Although the field of LDH-based photocatalysts has advanced considerably,the photocatalytic mechanism of LDHs has not been thoroughly elucidated;moreover,the photocatalytic active sites,the synergy between different components,and the interfacial reaction mechanism of LDH-based photocatalysts require further investigation.Therefore,LDH composite materials for photocatalysis could be developed through structural regulation and function-oriented design to investigate the effects of different components and interface reactions,the influence of photogenerated carriers,and the impact of material composition on the physical and chemical properties of the LDH-based photocatalyst.
基金financially supported by the Australian Research Council under the Laureate Fellowship Scheme (FL140100081)
文摘Solar-powered carbon dioxide (CO_2)-to-fuel conversion presents itself as an ideal solution for both CO_2 mit- igation and the rapidly growing world energy demand. In this work, the heating effect of light irradiation onto a bed of supported nickel (Ni) catalyst was utilized to facilitate CO_2 conversion. Ceria (CeO_2)-titania (TiO_2) oxide supports of different compositions were employed and their effects on photothermal CO_2 conver- sion examined, Two factors are shown to be crucial for instigating photothermal CO_2 methanation activity: ① Fine nickel deposits are required for both higher active catalyst area and greater light absorption capacity for the initial heating of the catalyst bed; and ② the presence of defect sites on the support are necessary to promote adsorption of C02 for its subsequent activation, Titania inclusion within the support plays a crucial role in maintaining the oxygen vacancy defect sites on the (titanium-doped) cerium oxide. The combination of elevated light absorption and stabilized reduced states for CO_2 adsorption subsequently invokes effective Dhotothermal CO_2 methanation when the ceria and titania are blended in the ideal ratio(s).
文摘Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nanorod arrays(NRAs)with enhanced photocatalytic activity and photostability for CO2 reduction under visible light irradiation.ZnO NRA/C-x(x=005,01,02,and 03)nanohybrids are prepared by calcining pre-synthesized ZnO NRAs with different amounts of glucose(0.05,0.1,0.2,and 0.3 g)as a carbon source via a hydrothermal method.X-ray photoelectron spectroscopy reveals that the obtained ZnO NRA/C-x nanohybrids are imparted with the effects of both carbon doping and carbon coating,as evidenced by the detected C-O-Zn bond and the C-C,C-O and C=O bonds,respectively.While the basic structure of ZnO remains unchanged,the UV-Vis absorption spectra show increased absorbance owing to the carbon doping effect in the ZnO NRA/C-x nanohybrids.The photoluminescence(PL)intensities of ZnO NRA/C-x nanohybrids are lower than that of bare ZnO NRA,indicating that the graphitic carbon layer coated on the surface of the ZnO NRA significantly enhances the charge carrier separation and transport,which in turn enhances the photoelectrochemical property and photocatalytic activity of the ZnO NRA/C-x nanohybrids for CO2 reduction.More importantly,a long-term reaction of photocatalytic CO2 reduction demonstrates that the photostability of ZnO NRA/C-x nanohybrids is significantly increased in comparison with the bare ZnO NRA.
文摘Constructed by selecting appropriate building blocks,covalent organic frameworks(COFs)can be endowed with a variety of specific functions.Herein,we successfully synthesized an imine‐linked H_(2)PReBpy‐COF with the CO_(2) reduction catalyst[ReI(bpy)(CO)_(3)Cl]and the porphyrin photosensitizer as the monomeric building units.The light‐harvesting properties of the porphyrin itself,augmented by the extendedπ‐conjugated planar structure of 2D COF,enable H_(2)PReBpy‐COF the excellent light‐harvesting capability,efficient charge separation,and fast interfacial charge transfer.In addition,a large amount of uniformly distributed[ReI(bpy)(CO)_(3)Cl]units offer H_(2)PReBpy‐COF an excellent activity toward photocatalytic CO_(2) reduction with moderate selectivity and reusability.This study demonstrated a proof of concept in which the advantages of COFs and functional monomers are rationally integrated for photocatalytic solar fuel conversion.
基金Project(21872174)supported by the National Natural Science Foundation of ChinaProjects(2017CX003,20180018050001)supported by the Innovation-Driven Plan in Central South University,China+3 种基金Project supported by State Key Laboratory of Powder Metallurgy in Central South University,ChinaProject(JCYJ20180307151313532)supported by Shenzhen Science and Technology Innovation Project,ChinaProject supported by the Thousand Youth Talents Plan of ChinaProject supported by the Hundred Youth Talents Program of Hunan,China
文摘Photocatalytic carbon dioxide reduction reaction(CO_(2)RR)has been considered as one of most effective ways to solve the current energy crisis and environmental problems.However,the practical application of photocatalytic CO_(2)RR is largely hindered by lock of efficient catalyst.Here,hierarchical titanium dioxide(TiO_(2))nanostructures with a highly active{001}surface were successfully synthesized by a facile approach from metal Ti powders.The obtained hierarchical TiO_(2)nanostructures were composed of TiO_(2)nanorods,which have a diameter about 5–10 nm and a length of several micrometers.It is found that these nanorods have exposed{001}facets.On the other hand,these hierarchical TiO_(2)nanostructures have a good light-harvesting efficiency with the help of TiO_(2)nanorods component and large specific surface area.Therefore,these hierarchical TiO_(2)nanostructures exhibit a much better activity for photocatalytic CO_(2)reduction than that of commercial TiO_(2)(P25).This high activity can be attributed to the synergistic effects of active surface,efficient charge transfer along nanorods and good light harvesting in the nanorod-hierarchical nanostructures.
文摘Photocatalysis has become a focal point in research as a clean and sustainable technology with the potential to solve environmental problems and energy crises.The loading of noble-metal co-catalysts can substantially improve the photocatalytic efficiency of semiconductors.Because the high cost and scarcity of noble metals markedly limit their large-scale applications,finding a noble-metal-alternative co-catalyst is crucial.MXene,a novel 2D transition metal material,has attracted considerable attention as a promising substitute for noble metal co-catalysts owing to its cost-efficiency,unique 2D layered structure,and excellent electrical,optical,and thermodynamic properties.This review focuses on the latest advancements in research on MXenes as co-catalysts in relatively popular photocatalytic applications(hydrogen production,CO2 reduction,nitrogen fixation,and organic pollutant oxidation).The synthesis methods and photocatalytic mechanisms of MXenes as co-catalysts are also summarized according to the type of MXene-based material.Finally,the crucial opportunities and challenges in the prospective development of MXene-based photocatalysts are outlined.We emphasize that modern techniques should be used to demonstrate the effects of MXenes on photocatalysis and that the photocatalytic activity of MXene-based photocatalysts can be further improved using defective engineering and recent phenomena such as the localized surface plasmon resonance effect and single-atom catalysis.
基金The National Major Science and Technology Project(No.2017ZX07202-004-005)。
文摘To address the environmental and health hazards of nitrate(NO_(3)^(-))in water,a denitrification advanced reduction process(ARP)using only formic acid(HCOOH)activated by ultraviolet(UV)light was proposed.The efficiency,influencing factors,mechanism,and kinetics of the reduction were investigated through component analysis and radical detection.Results show that,after 90 min of UV illumination,the reduction and gas conversion ratios of 50 mg/L NO_(3)^(-)-N reach 99.9%and 99.8%,respectively,under 9 mM of C_(0)(HCOOH),pH=3.0,and N_(2) aeration.Meanwhile,96.7%of HCOOH is consumed and converted into gas.The NO_(3)^(-)-N conversion process includes the transformation to NO_(2)^(-)-N,followed by a further reduction to gas and a direct conversion into gas,introducing small amounts of nitrite and ammonia.The carbon dioxide anion radical(·CO_(2)^(-))from HCOOH/HCOO^(-)is the principal cause of NO_(3)^(-)-N reduction by UV/HCOOH/N 2 ARP.In contrast,·CO_(2)^(-)production is caused by the hydroxyl radical(·OH).The NO_(3)^(-)-N reduction efficiency is enhanced by the increase in the light intensity,considerably affected by the initial pH,and less affected by inorganic anions,including Cl^(-),H_(2)PO_(4)^(-),and HCO_(3)^(-)/CO_(3)^(2-).The initial HCOOH concentration and light intensity are the main factors that influence the NO_(3)^(-)-N reduction rate.