AIM: To investigate the anti-tumor effects of nuclear factor-κB (NF-κB) inhibitor SN50 and related mechanisms of SGC7901 human gastric carcinoma cells. METHODS: MTT assay was used to determine the cytotoxic effects ...AIM: To investigate the anti-tumor effects of nuclear factor-κB (NF-κB) inhibitor SN50 and related mechanisms of SGC7901 human gastric carcinoma cells. METHODS: MTT assay was used to determine the cytotoxic effects of SN50 in gastric cancer cell line SGC7901. Hoechst 33258 staining was used to detect apoptosis morphological changes after SN50 treatment. Activation of autophagy was monitored with monodansylcadaverine (MDC) staining after SN50 treatment.Immunofluorescence staining was used to detect the expression of light chain 3 (LC3). Mitochondrial membrane potential was measured using the fluorescent probe JC-1. Western blotting analysis were used to determine the expression of proteins involved in apoptosis and autophagy including p53, p53 upregulated modulator of apoptosis (PUMA), damage-regulated autophagy modulator (DRAM), LC3 and Beclin 1. We detected the effects of p53-mediated autophagy activation on the apoptosis of SGC7901 cells with the p53 inhibitor pifithrin-α. RESULTS: The viability of SGC7901 cells was inhibited after SN50 treatment. Inductions in the expression of apoptotic protein p53 and PUMA as well as autophagic protein DRAM, LC3 and Beclin 1 were detected with Western blotting analysis. SN50-treated cells exhibited punctuate microtubule-associated protein 1 LC3 in immunoreactivity and MDC-labeled vesicles increased after treatment of SN50 by MDC staining. Collapse of mitochondrial membrane potential Δψ were detected for 6 to 24 h after SN50 treatment. SN50-induced increases in PUMA, DRAM, LC3 and Beclin 1 and cell death were blocked by the p53 specific inhibitor pifithrin-α. CONCLUSION: The anti-tumor activity of NF-κB inhibitors is associated with p53-mediated activation of autophagy.展开更多
Beginning with the method of whole path iterative ray-tracing and according to the positive definiteness of the coefficient matrix of the systems of linear equations, a symmetry olock tridiagonal matrix was decomposed...Beginning with the method of whole path iterative ray-tracing and according to the positive definiteness of the coefficient matrix of the systems of linear equations, a symmetry olock tridiagonal matrix was decomposed into the product of block bidiagonal triangular matrix and its transpose by means of Cholesky decomposition. Then an algorithm for solving systems of block bidiagonal triangular linear equations was given, which is not necessary to treat with the zero elements out of banded systems. A fast algorithm for solving the systems of symmetry block tridiagonal linear equations was deduced, which can quicken the speed of ray-tracing. Finally, the simulation based on this algorithm for ray-tracing in three dimensional media was carried out. Meanwhile, the segmentally-iterative ray-tracing method and banded method for solving the systems of block tridiagonal linear equations were compared in the same model mentioned above. The convergence condition was assumed that the L-2 norm summation for mk, 1 and mk. 2 in the whole ray path was limited in 10-6. And the calculating speeds of these methods were compared. The results show that the calculating speed of this algorithm is faster than that of conventional method and the calculated results are accurate enough. In addition, its precision can be controlled according to the requirement of ray-tracing.展开更多
基金Supported by Health Foundation of Jiangsu Province (H20 0719)the Higher Education Foundation of Jiangsu Province (08KJB320014)+2 种基金the Natural Science Foundation of Jiangsu Province (BK2008168)Suzhou High-Level Talents Project (2008-11)the Science, Education and Health Foundation of Soochow City (SWKQ00814)
文摘AIM: To investigate the anti-tumor effects of nuclear factor-κB (NF-κB) inhibitor SN50 and related mechanisms of SGC7901 human gastric carcinoma cells. METHODS: MTT assay was used to determine the cytotoxic effects of SN50 in gastric cancer cell line SGC7901. Hoechst 33258 staining was used to detect apoptosis morphological changes after SN50 treatment. Activation of autophagy was monitored with monodansylcadaverine (MDC) staining after SN50 treatment.Immunofluorescence staining was used to detect the expression of light chain 3 (LC3). Mitochondrial membrane potential was measured using the fluorescent probe JC-1. Western blotting analysis were used to determine the expression of proteins involved in apoptosis and autophagy including p53, p53 upregulated modulator of apoptosis (PUMA), damage-regulated autophagy modulator (DRAM), LC3 and Beclin 1. We detected the effects of p53-mediated autophagy activation on the apoptosis of SGC7901 cells with the p53 inhibitor pifithrin-α. RESULTS: The viability of SGC7901 cells was inhibited after SN50 treatment. Inductions in the expression of apoptotic protein p53 and PUMA as well as autophagic protein DRAM, LC3 and Beclin 1 were detected with Western blotting analysis. SN50-treated cells exhibited punctuate microtubule-associated protein 1 LC3 in immunoreactivity and MDC-labeled vesicles increased after treatment of SN50 by MDC staining. Collapse of mitochondrial membrane potential Δψ were detected for 6 to 24 h after SN50 treatment. SN50-induced increases in PUMA, DRAM, LC3 and Beclin 1 and cell death were blocked by the p53 specific inhibitor pifithrin-α. CONCLUSION: The anti-tumor activity of NF-κB inhibitors is associated with p53-mediated activation of autophagy.
基金Project(40674071) supported by the National Natural Science Foundation of ChinaProject(KFAS2002-2003) supported by the Korea Foundation for Advanced Studies
文摘Beginning with the method of whole path iterative ray-tracing and according to the positive definiteness of the coefficient matrix of the systems of linear equations, a symmetry olock tridiagonal matrix was decomposed into the product of block bidiagonal triangular matrix and its transpose by means of Cholesky decomposition. Then an algorithm for solving systems of block bidiagonal triangular linear equations was given, which is not necessary to treat with the zero elements out of banded systems. A fast algorithm for solving the systems of symmetry block tridiagonal linear equations was deduced, which can quicken the speed of ray-tracing. Finally, the simulation based on this algorithm for ray-tracing in three dimensional media was carried out. Meanwhile, the segmentally-iterative ray-tracing method and banded method for solving the systems of block tridiagonal linear equations were compared in the same model mentioned above. The convergence condition was assumed that the L-2 norm summation for mk, 1 and mk. 2 in the whole ray path was limited in 10-6. And the calculating speeds of these methods were compared. The results show that the calculating speed of this algorithm is faster than that of conventional method and the calculated results are accurate enough. In addition, its precision can be controlled according to the requirement of ray-tracing.