Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate d...Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate deposition were investigated. Inoculated BGll in different calcium ion concentrations was used for the experimental group, while the BGll culture medium was used for the control group. The surface morphologies of the calcium carbonate deposits in the experimental and control groups were determined by scanning and transmission electron microscopy. The deposits were analyzed by electronic probe micro-analysis, Fourier transform infrared spectrum, X-ray diffraction, thermal gravimetric analysis and differential scanning calorimetry. The results show that the surfaces of the crystals in the experimental group were hexahedral in a scaly pattern. The particle sizes were micrometer-sized and larger than those in the control group. The deposits of the control group contained calcium (Ca), carbon (C), oxygen (O), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), and other elements. The deposits in the experimental group contained Ca, C, and O only. The deposits of both groups contained calcite. The thermal decomposition temperature of the deposits in the control group was lower than those in the experimental group. It showed that the CaCO3 deposits of the experimental group had higher thermal stability than those of the control group. This may be due to the secondary metabolites produced by the algae cells, which affect the carbonate crystal structure and result in a close-packed structure. The algae cells that remained after thermal weight loss were heavier in higher calcium concentrations in BGll culture media. There may be more calcium- containing crystals inside and outside of these cells. These results shall be beneficial for understanding the formation mechanism of carbonate minerals.展开更多
A series of novel copolymers were successfully synthesized by ring-opening polymerization (ROP) of 3 (S)-methyl-morpholine-2,5-dione (MMD) and 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) using stan- no...A series of novel copolymers were successfully synthesized by ring-opening polymerization (ROP) of 3 (S)-methyl-morpholine-2,5-dione (MMD) and 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) using stan- nous octoate as catalyst. The copolymers were characterized by means of ~H-NMR and FT-IR spectroscopy. Gel permeation chromatography (GPC) test shows that the average-number relative molecular mass and average-weight rela- tive molecular mass slightly increase with the increase of MBC content in feed. The results of differential scanning calorimetry (DSC) demonstrate that the glass transition temperature of copolymers increases with the increase of MBC content in copolymers. The copolymers of MMD and MBC are amorphous copolymers, as indicated by DSC results, while the homopolymer of MMD is semicrystalline.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.40972043,41040018,41210104058,21176145,41372108,41302079)the Higher Educational Science and Technology Program of Shandong Province(No.J10LC15)+4 种基金the China Postdoctoral Science Foundation(No.2013M540560)the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province,and SDUST Research Fund(No.2010KYTD103)the Open Project of Key Lab of Marine Bioactive Substance and Modern Analytical Technique,State Oceanic Administration,China(No.MBSMAT-2012-03)the Scientific and Technological Program of Qingdao(No.13-1-4-232-jch)the Domestic Visiting Scholar Program for Young Core Teachers in Shandong Universities,Shandong Province,China
文摘Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate deposition were investigated. Inoculated BGll in different calcium ion concentrations was used for the experimental group, while the BGll culture medium was used for the control group. The surface morphologies of the calcium carbonate deposits in the experimental and control groups were determined by scanning and transmission electron microscopy. The deposits were analyzed by electronic probe micro-analysis, Fourier transform infrared spectrum, X-ray diffraction, thermal gravimetric analysis and differential scanning calorimetry. The results show that the surfaces of the crystals in the experimental group were hexahedral in a scaly pattern. The particle sizes were micrometer-sized and larger than those in the control group. The deposits of the control group contained calcium (Ca), carbon (C), oxygen (O), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), and other elements. The deposits in the experimental group contained Ca, C, and O only. The deposits of both groups contained calcite. The thermal decomposition temperature of the deposits in the control group was lower than those in the experimental group. It showed that the CaCO3 deposits of the experimental group had higher thermal stability than those of the control group. This may be due to the secondary metabolites produced by the algae cells, which affect the carbonate crystal structure and result in a close-packed structure. The algae cells that remained after thermal weight loss were heavier in higher calcium concentrations in BGll culture media. There may be more calcium- containing crystals inside and outside of these cells. These results shall be beneficial for understanding the formation mechanism of carbonate minerals.
基金Supported by Chinese Program for New Century Excellent Talents in University "NCET",Ministry of Education of P.R. China(No.2008DFA51170)
文摘A series of novel copolymers were successfully synthesized by ring-opening polymerization (ROP) of 3 (S)-methyl-morpholine-2,5-dione (MMD) and 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) using stan- nous octoate as catalyst. The copolymers were characterized by means of ~H-NMR and FT-IR spectroscopy. Gel permeation chromatography (GPC) test shows that the average-number relative molecular mass and average-weight rela- tive molecular mass slightly increase with the increase of MBC content in feed. The results of differential scanning calorimetry (DSC) demonstrate that the glass transition temperature of copolymers increases with the increase of MBC content in copolymers. The copolymers of MMD and MBC are amorphous copolymers, as indicated by DSC results, while the homopolymer of MMD is semicrystalline.