The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature ...The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature is reported. The full width at half maximum of the band edge emitting peaks of the photoluminescence (PL) spectra at room temperature is less than 35meV for most of the multi-layer QD samples,revealing good,reproducible MBE growth conditions. Moreover,atomic force microscopy images show that the QD surface density can be controlled in the range from 1×10^10 to 7 ×10^10 cm^-2 . The best PL properties are obtained at a QD surface density of about 4×10^10cm^-2. Edge emitting lasers containing 3 and 5 stacked QD layers as the active layer lasing at room temperature in continuous wave operation mode are reported.展开更多
The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxat...The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxation oscillation frequency of over 30GHz MQW DFB laser is presented.展开更多
A novel fabrication process related to a smoothly wet chemical etching profile o f InP-based epitaxial layers in the crystal direction of [01for an InP-based monol ithic vertically integrated transmitter with an M...A novel fabrication process related to a smoothly wet chemical etching profile o f InP-based epitaxial layers in the crystal direction of [01for an InP-based monol ithic vertically integrated transmitter with an MQW laser diode and a heterojunction bipolar tran sistors driver circuit is described.A clear eye output diagram via an O/E converter is demonstrat ed und er a 1.25Gb/s non-return-zero pseudorandom code with a pattern length of 2 the integrated transmitter has a power dissipation of about 120mW with an optical output of 2dBm.展开更多
We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To impro...We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To improve the energy transfer efficiency,UCNPs and CdS nanoparticles were bound in close proximity to each other within the SiO2matrix.β‐NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)core–shell nanoparticles were used as nanotransducers for near infrared light.These nanoparticles exhibited enhanced upconversion fluorescence compared withβ‐NaYF4:Yb(30%),Tm(0.5%)orβ–NaYF4:Yb(30%),Tm(0.5%)@NaYF4nanoparticles.The morphologies,size and chemical compositions have been extensively investigated using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),X‐ray diffraction(XRD)and X‐ray photoelectron spectra(XPS),respectively.The TEM images showed that the TiO2composite nanotubes were embedded with a large amount of UCNPs and CdS nanoparticles.The composite TiO2nanotubes degraded more than90%of rhodamine B(RhB)dye during20min of irradiation by simulated solar light.In particular,more than50%of RhB was decomposed in70min,under irradiation of near infrared light(NIR).This high degradation was attributed to the full spectrum absorption of solar light,and the enhanced transfer efficiency for near infrared light.The as‐prepared nanostructures can harness solar energy,and provide an alternative to overcome energy shortages and environmental protection.展开更多
Our work is based on the known research results of inherent optical quality of ocean color constituents.According to optimized parameters and induced fluorescence term of chlorophyll, this paper puts forward a remote ...Our work is based on the known research results of inherent optical quality of ocean color constituents.According to optimized parameters and induced fluorescence term of chlorophyll, this paper puts forward a remote sensing reflectance model of sea water, which is fitted in Liaodong Bay of Bohai. An inverse model that can evaluate redtide biomass according to chlorophyll retrieval is provided by inducing a functional extreme problem. The calculation example of the model indicates that the inversion model has explicit mathematic and physical meaning, but its practicability needs to be verified.展开更多
Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is...Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.展开更多
Algal biotechnology has advanced greatly in the past three decades. Many microalgae are now cultivated to produce bioactive substances. Odontella aurita is a marine diatom industrially cultured in outdoor open ponds a...Algal biotechnology has advanced greatly in the past three decades. Many microalgae are now cultivated to produce bioactive substances. Odontella aurita is a marine diatom industrially cultured in outdoor open ponds and used for human nutrition. For the first time, we have systematically investigated the effects of culture conditions in cylindrical glass columns and fiat-plate photobioreactors, including nutrients (nitrogen, phosphorus, silicon, and sulfur), light intensity and light path, on O. aurita cell growth and biochemical composition (protein, carbohydrate, β-1,3-glucan, lipids, and ash). The optimal medium for photoautotrophic cultivation of O. aurita contained 17.65 mmol/L nitrogen, 1.09 mmol/L phosphorus, 0.42 mmol/L silicon, and 24.51 mmol/L sulfur, yielding a maximum biomass production of 6.1-6.8 g/L and 6.7-7.8 g/L under low and high light, respectively. Scale-up experiments were conducted with fiat-plate photobioreactors using different light-paths, indicating that a short light path was more suitable for biomass production of O. aurita. Analyses of biochemical composition showed that protein content decreased while carbohydrate (mainly composed of 15-1,3-glucan) increased remarkably to about 50% of dry weight during the entire culture period. The highest lipid content (19.7% of dry weight) was obtained under 0.11 mmol/L silicon and high light conditions at harvest time. Fatty acid profiles revealed that 80% were Cx4, C^6, and C20, while arachidonic acid and eicosapentaenoic acid (EPA) accounted for 1.6%-5.6% and 9%-20% of total fatty acids, respectively. High biomass production and characteristic biochemical composition profiles make O. aurita a promising microalga for the production ofbioactive components, such as EPA and D-1,3-glucan.展开更多
Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in a...Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF (deuterium fluoride)), short pulse solid-state and UV (ultraviolet) lasers. Main advantage of short pulse lasers is their ability in forming of super long ionized channels with a characteristic diameter of- 100 mm in atmosphere along the beam propagation direction. At estimated electron densities below 1,016 cm3 in these filaments and laser wavelengths in the range of 0.5-1.0 mm, the plasma barely absorbs laser radiation. In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of-100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (〈 1 J). An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m). Not so long ago scientific group from P.N. Lebedev physical institute has improved that result, the discharge gap (-1m) had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m) electric discharge by 100-ns UV pulses. Our previous result -16 m long conducting channel controlled by a laser spark at the voltage -3 MV was obtained more than 20 years ago in Russia and Japan by using pulsed CO2 laser with energy -0.5 kJ. An average electric field strength was 〈 190 kV/m. It is still too much for efficient applications.展开更多
Based on the analysis of carrier dynamics in quantum dots (QDs), the numerical model of InAs/GaAs QD laser is developed by means of complete rate equations. The model includes four energy levels and among them three...Based on the analysis of carrier dynamics in quantum dots (QDs), the numerical model of InAs/GaAs QD laser is developed by means of complete rate equations. The model includes four energy levels and among them three energy levels join in lasing. A simulation is conducted by MATLAB according to the rate equation model we obtain. The simulation results of PI characteristic, gain characteristic and intensity modulation response are reasonable. Also, the relations between the left facet reflectivity of laser cavity and threshold current as well as modulation bandwidth are studied. It is indicated that the left facet reflectivity increasing can result in reduced threshold current and improved mo6ulation bandwidth, which is in accordance with experimental results. The internal mechanism of QD lasers is fully described with the rate equation model, which is helpful for QD lasers research.展开更多
The GaAs based InGaAs metamorphic structures and their growth by molecular beam epitaxy (MBE) are investigated. The controlling of the source temperature is improved to realize the linearly graded InGaAs metamorphic s...The GaAs based InGaAs metamorphic structures and their growth by molecular beam epitaxy (MBE) are investigated. The controlling of the source temperature is improved to realize the linearly graded InGaAs metamorphic structure precisely. The threading dislocations are reduced. We also optimize the growth and annealing parameters of the InGaAs quantum well (QW). The 1.3-μm GaAs based metamorphic InGaAs QW is completed. A 1.3-μm GaAs based metamorphic laser is reported.展开更多
Recently, the spectroscopic signatures of a benzoselenadiazole derivative have been investigated in the framework of designing a new ratiometric fluoride sensor (Saravanan et al., Org Lett, 2014, 16: 354-357). It w...Recently, the spectroscopic signatures of a benzoselenadiazole derivative have been investigated in the framework of designing a new ratiometric fluoride sensor (Saravanan et al., Org Lett, 2014, 16: 354-357). It was suggested that this sensor is un- dergoing excited-state intramolecular proton transfer. In this work, we provide a new look at these experimental data, using a state-of-the-art time-dependent density fimctiona/theory approach to mimic the spectroscopic signatures. New insights about the nature of the excited-state processes are obtained.展开更多
文摘The growth of multi-layer InGaAs/InAs/GaAs self-assembled quantum dots (QDs) by molecular beam epitaxy (MBE) is investigated,and a QD laser diode lasing at 1.33μm in continuous operation mode at room temperature is reported. The full width at half maximum of the band edge emitting peaks of the photoluminescence (PL) spectra at room temperature is less than 35meV for most of the multi-layer QD samples,revealing good,reproducible MBE growth conditions. Moreover,atomic force microscopy images show that the QD surface density can be controlled in the range from 1×10^10 to 7 ×10^10 cm^-2 . The best PL properties are obtained at a QD surface density of about 4×10^10cm^-2. Edge emitting lasers containing 3 and 5 stacked QD layers as the active layer lasing at room temperature in continuous wave operation mode are reported.
文摘The well number and the cavity length of 1.55μm wavelength In 1-x-y Ga y Al x As MQW DFB lasers are optimized using a simple model.A low threshold,maximum operating temperature of 550~560K,and high relaxation oscillation frequency of over 30GHz MQW DFB laser is presented.
文摘A novel fabrication process related to a smoothly wet chemical etching profile o f InP-based epitaxial layers in the crystal direction of [01for an InP-based monol ithic vertically integrated transmitter with an MQW laser diode and a heterojunction bipolar tran sistors driver circuit is described.A clear eye output diagram via an O/E converter is demonstrat ed und er a 1.25Gb/s non-return-zero pseudorandom code with a pattern length of 2 the integrated transmitter has a power dissipation of about 120mW with an optical output of 2dBm.
基金supported in part by the National Natural Science Foundation of China(21471043,21304028,51403195,31501576)~~
文摘We report a colloidal process to coat a layer of TiO2onto SiO2composite nanofibers containing embedded CdS and upconversion nanoparticles(UCNPs).The SiO2composite nanofibers were fabricated by electrospinning.To improve the energy transfer efficiency,UCNPs and CdS nanoparticles were bound in close proximity to each other within the SiO2matrix.β‐NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)core–shell nanoparticles were used as nanotransducers for near infrared light.These nanoparticles exhibited enhanced upconversion fluorescence compared withβ‐NaYF4:Yb(30%),Tm(0.5%)orβ–NaYF4:Yb(30%),Tm(0.5%)@NaYF4nanoparticles.The morphologies,size and chemical compositions have been extensively investigated using field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM),X‐ray diffraction(XRD)and X‐ray photoelectron spectra(XPS),respectively.The TEM images showed that the TiO2composite nanotubes were embedded with a large amount of UCNPs and CdS nanoparticles.The composite TiO2nanotubes degraded more than90%of rhodamine B(RhB)dye during20min of irradiation by simulated solar light.In particular,more than50%of RhB was decomposed in70min,under irradiation of near infrared light(NIR).This high degradation was attributed to the full spectrum absorption of solar light,and the enhanced transfer efficiency for near infrared light.The as‐prepared nanostructures can harness solar energy,and provide an alternative to overcome energy shortages and environmental protection.
基金The work was supported by the High-tech Research and Devel-opment Programof China(S863-2001AA633080) Key Basic Re-search and Development Program of China 973-2001CB409708Key Laboratory of Marine Science and Numerical Modeling,State Oceanic Administration,China .
文摘Our work is based on the known research results of inherent optical quality of ocean color constituents.According to optimized parameters and induced fluorescence term of chlorophyll, this paper puts forward a remote sensing reflectance model of sea water, which is fitted in Liaodong Bay of Bohai. An inverse model that can evaluate redtide biomass according to chlorophyll retrieval is provided by inducing a functional extreme problem. The calculation example of the model indicates that the inversion model has explicit mathematic and physical meaning, but its practicability needs to be verified.
文摘Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(Nos.2009AA06440,2013AA065805)the National Basic Research Program of China(973 Program)(No.2011CB2009001)the National Natural Science Foundation of China(No.31170337)
文摘Algal biotechnology has advanced greatly in the past three decades. Many microalgae are now cultivated to produce bioactive substances. Odontella aurita is a marine diatom industrially cultured in outdoor open ponds and used for human nutrition. For the first time, we have systematically investigated the effects of culture conditions in cylindrical glass columns and fiat-plate photobioreactors, including nutrients (nitrogen, phosphorus, silicon, and sulfur), light intensity and light path, on O. aurita cell growth and biochemical composition (protein, carbohydrate, β-1,3-glucan, lipids, and ash). The optimal medium for photoautotrophic cultivation of O. aurita contained 17.65 mmol/L nitrogen, 1.09 mmol/L phosphorus, 0.42 mmol/L silicon, and 24.51 mmol/L sulfur, yielding a maximum biomass production of 6.1-6.8 g/L and 6.7-7.8 g/L under low and high light, respectively. Scale-up experiments were conducted with fiat-plate photobioreactors using different light-paths, indicating that a short light path was more suitable for biomass production of O. aurita. Analyses of biochemical composition showed that protein content decreased while carbohydrate (mainly composed of 15-1,3-glucan) increased remarkably to about 50% of dry weight during the entire culture period. The highest lipid content (19.7% of dry weight) was obtained under 0.11 mmol/L silicon and high light conditions at harvest time. Fatty acid profiles revealed that 80% were Cx4, C^6, and C20, while arachidonic acid and eicosapentaenoic acid (EPA) accounted for 1.6%-5.6% and 9%-20% of total fatty acids, respectively. High biomass production and characteristic biochemical composition profiles make O. aurita a promising microalga for the production ofbioactive components, such as EPA and D-1,3-glucan.
文摘Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF (deuterium fluoride)), short pulse solid-state and UV (ultraviolet) lasers. Main advantage of short pulse lasers is their ability in forming of super long ionized channels with a characteristic diameter of- 100 mm in atmosphere along the beam propagation direction. At estimated electron densities below 1,016 cm3 in these filaments and laser wavelengths in the range of 0.5-1.0 mm, the plasma barely absorbs laser radiation. In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of-100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (〈 1 J). An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m). Not so long ago scientific group from P.N. Lebedev physical institute has improved that result, the discharge gap (-1m) had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m) electric discharge by 100-ns UV pulses. Our previous result -16 m long conducting channel controlled by a laser spark at the voltage -3 MV was obtained more than 20 years ago in Russia and Japan by using pulsed CO2 laser with energy -0.5 kJ. An average electric field strength was 〈 190 kV/m. It is still too much for efficient applications.
文摘Based on the analysis of carrier dynamics in quantum dots (QDs), the numerical model of InAs/GaAs QD laser is developed by means of complete rate equations. The model includes four energy levels and among them three energy levels join in lasing. A simulation is conducted by MATLAB according to the rate equation model we obtain. The simulation results of PI characteristic, gain characteristic and intensity modulation response are reasonable. Also, the relations between the left facet reflectivity of laser cavity and threshold current as well as modulation bandwidth are studied. It is indicated that the left facet reflectivity increasing can result in reduced threshold current and improved mo6ulation bandwidth, which is in accordance with experimental results. The internal mechanism of QD lasers is fully described with the rate equation model, which is helpful for QD lasers research.
基金supported by the National Natural Science Foundation of China (Nos.90921015 and 10734060)the National Basic Research Program of China (No.2010CB327601)
文摘The GaAs based InGaAs metamorphic structures and their growth by molecular beam epitaxy (MBE) are investigated. The controlling of the source temperature is improved to realize the linearly graded InGaAs metamorphic structure precisely. The threading dislocations are reduced. We also optimize the growth and annealing parameters of the InGaAs quantum well (QW). The 1.3-μm GaAs based metamorphic InGaAs QW is completed. A 1.3-μm GaAs based metamorphic laser is reported.
基金D.Jacquemm acknowledges the European Research Council(ERC)the Règion des Pays de la Loire for financial support in the framework of a Starting Grant(Marches-278845)a recrutement sur poste stratègique,respectively
文摘Recently, the spectroscopic signatures of a benzoselenadiazole derivative have been investigated in the framework of designing a new ratiometric fluoride sensor (Saravanan et al., Org Lett, 2014, 16: 354-357). It was suggested that this sensor is un- dergoing excited-state intramolecular proton transfer. In this work, we provide a new look at these experimental data, using a state-of-the-art time-dependent density fimctiona/theory approach to mimic the spectroscopic signatures. New insights about the nature of the excited-state processes are obtained.