In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
The design and fabrication of a high speed, 12-channel monolithic integrated CMOS optoelectronic integrated circuit (OEIC) receiver are reported. Each channel of the receiver consists of a photodetector, a transimpe...The design and fabrication of a high speed, 12-channel monolithic integrated CMOS optoelectronic integrated circuit (OEIC) receiver are reported. Each channel of the receiver consists of a photodetector, a transimpedance amplifier,and a post-amplifier. The double photodiode structure speeds up the receiver but hinders responsivity. The adoption of active inductors in the TIA circuit extends the - 3dB bandwidth to a higher level. The receiver has been realized in a CSMC 0.6μm standard CMOS process. The measured results show that a single channel of the receiver is able to work at bit rates of 0.8- 1.4Gb/s. Altogether, the 12-channel OEIC receiver chip can be operated at 15Gb/s.展开更多
A broadband amplifier with transadmittance and transimpedance stages is designed and two types of improved AGC amplifiers are developed on the base of theory study. Making use of the basic amplifier cells, a main ampl...A broadband amplifier with transadmittance and transimpedance stages is designed and two types of improved AGC amplifiers are developed on the base of theory study. Making use of the basic amplifier cells, a main amplifier IC for optical-fiber receivers is deliberated. By computer simulating the performances of the designed main amplifier meet the necessity of high gain and wide dynamic range . They are maximum voltage gain of 42 dB, the bandwidth of 730 MHz,the input signal( V p-p )range from 5 mV to 1 V,the output amplitude about 1 V, the dynamic range of 46 dB. The designed circuit containing no inductance and large capacitance will be convenient for realizing integration. A monolithic integrated design of 622 Mb/s main amplifier is completed.展开更多
A wideband monolithic optoelectronic integrated receiver with a high-speed photo-detector,completely compatible with standard CMOS processes,is designed and implemented in 0.6μm standard CMOS technology.The experimen...A wideband monolithic optoelectronic integrated receiver with a high-speed photo-detector,completely compatible with standard CMOS processes,is designed and implemented in 0.6μm standard CMOS technology.The experimental results demonstrate that its performance approaches applicable requirements,where the photo-detector achieves a -3dB frequency of 1.11GHz,and the receiver achieves a 3dB bandwidth of 733MHz and a sensitivity of -9dBm for λ=850nm at BER=10-12.展开更多
A sensitivity design method for a CMOS optoelectronic integrated circuit (OEIC) receiver is reported. The receiver consists of a regulated cascade (RGC) transimpedance amplifier (TIA) and a double photodiode (...A sensitivity design method for a CMOS optoelectronic integrated circuit (OEIC) receiver is reported. The receiver consists of a regulated cascade (RGC) transimpedance amplifier (TIA) and a double photodiode (DPD) detector. The noise and sensitivity of the receiver are analyzed in detail. The noise mainly comes from the thermal noise of resistors and the flicker noise of MOSFETs. The relationship between noise and receiver sensitivity is presented. The sensitivity design method for the receiver is given by a set of equations. The OEIC receiver was implemented in a CSMC 0.6μm standard CMOS process. The measured eye diagram shows that the CMOS OEIC receiver is able to work at bit rates of up to 1.25GB/s and the sensitivity is - 12dBm.展开更多
A monolithic photoreceiver which consists of a double photodiode (DPD) detector and a regulated cascade (RGC) transimpedance amplifier (TIA) is designed.The small signal circuit model of DPD is given and the bandwidth...A monolithic photoreceiver which consists of a double photodiode (DPD) detector and a regulated cascade (RGC) transimpedance amplifier (TIA) is designed.The small signal circuit model of DPD is given and the bandwidth design method of a monolithic photoreceiver is presented.An important factor which limits the bandwidth of DPD detector and the photoreceiver is presented and analyzed in detail.A monolithic photoreceiver with 1.71GHz bandwidth and 49dB transimpedance gain is designed and simulated by applying a low-cost 0.6μm CMOS process and the test result is given.展开更多
2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includ...2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includes a 4: 1 multiplexer and a laser diode driver (LDD), has four 622 Mbit/s random signals as its inputs and gets a 2.5 Gbit/s driving signal as its output; the receiver detects a 2.5 Gbit/s random signal and gets four 622 Mbit/s signals at the output. The main circuits include a trans-impedance amplifier (TIA), a limiting amplifier, a clock and data recovery (CDR) unit, and a 1: 4 demultiplexer (DEMUX). Test results prove the logic functions of the transmitter to be right, and the 10% to 90% rise and fall times of transmitter's output data eye diagram are 211.1 ps and 200 ps, respectively. The sensitivity of the receiver is measured to be better than 20 mV. The root mean square jitter of the DEMUX's output data is 15.6 ps and that of the clock after 1: 4 frequency dividing is 1.9 ps. Two chips are both applicable to 2.5 Gbit/s optical fiber communication systems.展开更多
The muhimode interference (MMI) couplers, which operate at 1. 55 microns in deep rib InGaAsP/InP waveguide with large lateral confinement and tunable power splitting ratios, are of high interest in integrated optics...The muhimode interference (MMI) couplers, which operate at 1. 55 microns in deep rib InGaAsP/InP waveguide with large lateral confinement and tunable power splitting ratios, are of high interest in integrated optics. The gold contacts are applied on the top of waveguides where tuning is desired and the plasma effect will lead to negative refractive index change. The three-dimensional (3D) finite difference beam propagation method(FD-BPM) is used to model the tunable MMI couplers. The length of a 2 × 2 overlap-MMI is determined by FD-BPM, so the longitudinal position of tuning spots is obtained. The position of gold contacts with two types, the edge-pads or center-pad, are also determined. In our design, the length of MMI is 180 microns. If the width of pads is 50 microns and the refractive index is tuned from 0 to -0. 027, the power ratio is tuned from 50 : 50 to the maximum 88.5 : 11.4. For deep rib structure, the effective index(EI) method can not be used to simplify the 3D waveguide to plane waveguide because of its lower precision, and so the direct 3D FD-BPM simulation is necessary for the design of 3D MMI couplers.展开更多
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
文摘The design and fabrication of a high speed, 12-channel monolithic integrated CMOS optoelectronic integrated circuit (OEIC) receiver are reported. Each channel of the receiver consists of a photodetector, a transimpedance amplifier,and a post-amplifier. The double photodiode structure speeds up the receiver but hinders responsivity. The adoption of active inductors in the TIA circuit extends the - 3dB bandwidth to a higher level. The receiver has been realized in a CSMC 0.6μm standard CMOS process. The measured results show that a single channel of the receiver is able to work at bit rates of 0.8- 1.4Gb/s. Altogether, the 12-channel OEIC receiver chip can be operated at 15Gb/s.
文摘A broadband amplifier with transadmittance and transimpedance stages is designed and two types of improved AGC amplifiers are developed on the base of theory study. Making use of the basic amplifier cells, a main amplifier IC for optical-fiber receivers is deliberated. By computer simulating the performances of the designed main amplifier meet the necessity of high gain and wide dynamic range . They are maximum voltage gain of 42 dB, the bandwidth of 730 MHz,the input signal( V p-p )range from 5 mV to 1 V,the output amplitude about 1 V, the dynamic range of 46 dB. The designed circuit containing no inductance and large capacitance will be convenient for realizing integration. A monolithic integrated design of 622 Mb/s main amplifier is completed.
文摘A wideband monolithic optoelectronic integrated receiver with a high-speed photo-detector,completely compatible with standard CMOS processes,is designed and implemented in 0.6μm standard CMOS technology.The experimental results demonstrate that its performance approaches applicable requirements,where the photo-detector achieves a -3dB frequency of 1.11GHz,and the receiver achieves a 3dB bandwidth of 733MHz and a sensitivity of -9dBm for λ=850nm at BER=10-12.
文摘A sensitivity design method for a CMOS optoelectronic integrated circuit (OEIC) receiver is reported. The receiver consists of a regulated cascade (RGC) transimpedance amplifier (TIA) and a double photodiode (DPD) detector. The noise and sensitivity of the receiver are analyzed in detail. The noise mainly comes from the thermal noise of resistors and the flicker noise of MOSFETs. The relationship between noise and receiver sensitivity is presented. The sensitivity design method for the receiver is given by a set of equations. The OEIC receiver was implemented in a CSMC 0.6μm standard CMOS process. The measured eye diagram shows that the CMOS OEIC receiver is able to work at bit rates of up to 1.25GB/s and the sensitivity is - 12dBm.
文摘A monolithic photoreceiver which consists of a double photodiode (DPD) detector and a regulated cascade (RGC) transimpedance amplifier (TIA) is designed.The small signal circuit model of DPD is given and the bandwidth design method of a monolithic photoreceiver is presented.An important factor which limits the bandwidth of DPD detector and the photoreceiver is presented and analyzed in detail.A monolithic photoreceiver with 1.71GHz bandwidth and 49dB transimpedance gain is designed and simulated by applying a low-cost 0.6μm CMOS process and the test result is given.
基金The National High Technology Research and Develop-ment Program of China (863 Program) (No.2001AA312010).
文摘2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includes a 4: 1 multiplexer and a laser diode driver (LDD), has four 622 Mbit/s random signals as its inputs and gets a 2.5 Gbit/s driving signal as its output; the receiver detects a 2.5 Gbit/s random signal and gets four 622 Mbit/s signals at the output. The main circuits include a trans-impedance amplifier (TIA), a limiting amplifier, a clock and data recovery (CDR) unit, and a 1: 4 demultiplexer (DEMUX). Test results prove the logic functions of the transmitter to be right, and the 10% to 90% rise and fall times of transmitter's output data eye diagram are 211.1 ps and 200 ps, respectively. The sensitivity of the receiver is measured to be better than 20 mV. The root mean square jitter of the DEMUX's output data is 15.6 ps and that of the clock after 1: 4 frequency dividing is 1.9 ps. Two chips are both applicable to 2.5 Gbit/s optical fiber communication systems.
文摘The muhimode interference (MMI) couplers, which operate at 1. 55 microns in deep rib InGaAsP/InP waveguide with large lateral confinement and tunable power splitting ratios, are of high interest in integrated optics. The gold contacts are applied on the top of waveguides where tuning is desired and the plasma effect will lead to negative refractive index change. The three-dimensional (3D) finite difference beam propagation method(FD-BPM) is used to model the tunable MMI couplers. The length of a 2 × 2 overlap-MMI is determined by FD-BPM, so the longitudinal position of tuning spots is obtained. The position of gold contacts with two types, the edge-pads or center-pad, are also determined. In our design, the length of MMI is 180 microns. If the width of pads is 50 microns and the refractive index is tuned from 0 to -0. 027, the power ratio is tuned from 50 : 50 to the maximum 88.5 : 11.4. For deep rib structure, the effective index(EI) method can not be used to simplify the 3D waveguide to plane waveguide because of its lower precision, and so the direct 3D FD-BPM simulation is necessary for the design of 3D MMI couplers.