Mesozoic contraction deformation in the Yanshan and Taihang mountains is characterized by basement-involved thrust tectonics,basement-cored buckling anticlines and ductile thrust and nappe tectonics.Most of these defo...Mesozoic contraction deformation in the Yanshan and Taihang mountains is characterized by basement-involved thrust tectonics,basement-cored buckling anticlines and ductile thrust and nappe tectonics.Most of these deformations are orientated west-east,west-northwest and northeast to north-northeast.The contraction deformations began in the Permian,continued through the Triassic and Jurassic and terminated in the Early Cretaceous,and constitute an important part of the destruction of the North China Craton.It is estimated,from balanced cross-section reconstructions,that the north-south shortening of the central part of the Yanshan belt before 135 Ma was around 38%.The initial crust thickness,pre-dating the major contraction deformation in late Paleozoic and early Mesozoic,was estimated to be around 35 km based on paleogeographic characteristics.Assuming that the inferred depth of ductile thrusting deformation,20-25 km,was the crust thickness involved in the contraction deformation,and also assuming that the N-S contraction deformation was accommodated by vertical crust thickening,the thickness of the crust after the contraction deformation was expected to be around 47-50 km.This was the approximate crust thickness required for the eclogitization of the lower crust for delamination.The gravity potential accumulated by the isostatic uplift of the thickened crust,together with the decrease in crustal strength caused by the coeval magmatisms associated with the contraction deformation,led to the subsequent extensional collapse of the middle and upper crust although the regional stress regime associated with the plate interactions remained constant.It is inferred that the Mesozoic contraction deformations in the Yanshan and Taihang mountains were not only a significant tectonic process contributing to the destruction of the craton in middle and upper crust but also stimulated delamination at a deep level and the extension of the shallow crust.In other words,both the suspected delamination of the lower crust and upper mantle and the well constrained extension deformations of the shallow crust in the eastern North China Craton during the late Mesozoic are a consequence of crust thickening due to previous contractions.Extensional deformations could be expected to occur independently in the shallow crust,and are not necessarily associated with or responding to delamination at a deep level.展开更多
The ultrahigh-temperature(UHT) pelitic granulites from the Khondalite Belt, North China Craton(NCC), contain ilmenite in the matrix, which has been partially replaced by rutile. Based on this observation and the growt...The ultrahigh-temperature(UHT) pelitic granulites from the Khondalite Belt, North China Craton(NCC), contain ilmenite in the matrix, which has been partially replaced by rutile. Based on this observation and the growth of biotite by garnet-consuming reaction, the UHT rocks are inferred to have recorded three metamorphic stages: the peak metamorphic stage(M1) and two retrograde metamorphic stages(M2 and M3). The M1 stage is represented by the assemblage of perthite+sillimanite+ ilmenite in the matrix, and quartz inclusions bearing(in the cores) garnet porphyroblasts. The M2 stage is defined by rutile-replacing ilmenite and growth of garnet mantles and rims containing acicular sillimanite inclusions, with the garnet+ perthite+ sillimanite+rutile+ ilmenite+ quartz assemblage. The M3 stage is recorded by the growth of biotite in the matrix, with the garnet+ biotite+ perthite+ sillimanite+rutile+ilmenite+quartz assemblage. Based on phase equilibrium modeling, an isobaric cooling path is reconstructed, which is consistent with the idea that mantle-derived magma provided the heat for the UHT metamorphism in the Khondalite Belt, NCC.展开更多
Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and...Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and forming the plateau landscape. In company with uplifting and northward extruding of the Tibetan plateau, the contractional tectonic deformations persistently spread outward, building a gigantic basin-range system around the Tibetan plateau. This system is herein termed as the Cir- cure-Tibetan Plateau Basin-Range System, in which the global largest diffuse and the most energetic intra-continental defor- mations were involved, and populations of inheritance foreland basins or thrust belts were developed along the margins of an- cient cratonic plates due to the effects of the cratonic amalgamation, crust differentiation, orogen rejuvenation, and basin sub- sidence. There are three primary tectonic units in the Circum-Tibet Plateau Basin-Range System, which are the reactivated an- cient orogens, the foreland thrust belts, and the miniature cratonic basins. The Circum-Tibetan Plateau Basin-Range System is a gigantic deformation system and particular Himalayan tectonic domain in central-western China and is comparable to the Tibetan Plateau. In this system, northward and eastward developments of thrust deformations exhibit an arc-shaped area along the Kunlun-Altyn-Qilian-Longmenshan mountain belts, and further expand outward to the Altai-Yinshan-Luliangshan- Huayingshan mountain belts during the Late Cenozoic sustained collision of Indo-Asia. Intense intra-continental deformations lead ancient orogens to rejuvenate, young foreland basins to form in-between orogens and cratons, and thrusts to propagate from orogens to cratons in successive order. Driven by the Eurasia-Indian collision and its far field effects, both deformation and basin-range couplings in the arc-shaped area decrease from south to north. When a single basin-range unit is focused on, deformations become younger and younger together with more and more simple structural styles from piedmonts to craton in- teriors. In the Circum-Tibetan Plateau Basin-Range System, it presents three segmented tectonic deformational patterns: prop- agating in the west, growth-overthrusting in the middle, and slip-uplifting in the east. For natural gas exploration, two tectonic units, both the Paleozoic cratonic basins and the Cenozoic foreland thrust belts, are important because hydrocarbon in cen- tral-western China is preserved mainly in the Paleozoic cratonic paleo-highs and the Meso-Cenozoic foreland thrust belts, to- gether with characteristics of multiphrase hydrocarbon generation but late accumulation and enrichment.展开更多
基金supported by the National Natural Science Foundation of China (Grants Nos. 90814002,40672150,40272086)
文摘Mesozoic contraction deformation in the Yanshan and Taihang mountains is characterized by basement-involved thrust tectonics,basement-cored buckling anticlines and ductile thrust and nappe tectonics.Most of these deformations are orientated west-east,west-northwest and northeast to north-northeast.The contraction deformations began in the Permian,continued through the Triassic and Jurassic and terminated in the Early Cretaceous,and constitute an important part of the destruction of the North China Craton.It is estimated,from balanced cross-section reconstructions,that the north-south shortening of the central part of the Yanshan belt before 135 Ma was around 38%.The initial crust thickness,pre-dating the major contraction deformation in late Paleozoic and early Mesozoic,was estimated to be around 35 km based on paleogeographic characteristics.Assuming that the inferred depth of ductile thrusting deformation,20-25 km,was the crust thickness involved in the contraction deformation,and also assuming that the N-S contraction deformation was accommodated by vertical crust thickening,the thickness of the crust after the contraction deformation was expected to be around 47-50 km.This was the approximate crust thickness required for the eclogitization of the lower crust for delamination.The gravity potential accumulated by the isostatic uplift of the thickened crust,together with the decrease in crustal strength caused by the coeval magmatisms associated with the contraction deformation,led to the subsequent extensional collapse of the middle and upper crust although the regional stress regime associated with the plate interactions remained constant.It is inferred that the Mesozoic contraction deformations in the Yanshan and Taihang mountains were not only a significant tectonic process contributing to the destruction of the craton in middle and upper crust but also stimulated delamination at a deep level and the extension of the shallow crust.In other words,both the suspected delamination of the lower crust and upper mantle and the well constrained extension deformations of the shallow crust in the eastern North China Craton during the late Mesozoic are a consequence of crust thickening due to previous contractions.Extensional deformations could be expected to occur independently in the shallow crust,and are not necessarily associated with or responding to delamination at a deep level.
基金supported by the National Basic Research Program of China(2012CB416606)the National Natural Science Foundation of China(41421002,41430209)+1 种基金MOST Special Fund from the State Key Laboratory of Continental Dynamics,the Natural Science Foundation of Education Department of Shaanxi Provincial Government(14JK1733)Program for Changjiang Scholars and Innovative Research Team in University(IRT1281)
文摘The ultrahigh-temperature(UHT) pelitic granulites from the Khondalite Belt, North China Craton(NCC), contain ilmenite in the matrix, which has been partially replaced by rutile. Based on this observation and the growth of biotite by garnet-consuming reaction, the UHT rocks are inferred to have recorded three metamorphic stages: the peak metamorphic stage(M1) and two retrograde metamorphic stages(M2 and M3). The M1 stage is represented by the assemblage of perthite+sillimanite+ ilmenite in the matrix, and quartz inclusions bearing(in the cores) garnet porphyroblasts. The M2 stage is defined by rutile-replacing ilmenite and growth of garnet mantles and rims containing acicular sillimanite inclusions, with the garnet+ perthite+ sillimanite+rutile+ ilmenite+ quartz assemblage. The M3 stage is recorded by the growth of biotite in the matrix, with the garnet+ biotite+ perthite+ sillimanite+rutile+ilmenite+quartz assemblage. Based on phase equilibrium modeling, an isobaric cooling path is reconstructed, which is consistent with the idea that mantle-derived magma provided the heat for the UHT metamorphism in the Khondalite Belt, NCC.
基金supported by the National Science and Technology Major Project of China(Grant No.2011ZX05003-002)
文摘Northward subduction of the Cenozoic Tethys ocean caused the convergence and collision of Eurasia-Indian Plates, resulting in the lower crust thickening, the upper crust thrusting, and the Qinghai-Tibet uplifting, and forming the plateau landscape. In company with uplifting and northward extruding of the Tibetan plateau, the contractional tectonic deformations persistently spread outward, building a gigantic basin-range system around the Tibetan plateau. This system is herein termed as the Cir- cure-Tibetan Plateau Basin-Range System, in which the global largest diffuse and the most energetic intra-continental defor- mations were involved, and populations of inheritance foreland basins or thrust belts were developed along the margins of an- cient cratonic plates due to the effects of the cratonic amalgamation, crust differentiation, orogen rejuvenation, and basin sub- sidence. There are three primary tectonic units in the Circum-Tibet Plateau Basin-Range System, which are the reactivated an- cient orogens, the foreland thrust belts, and the miniature cratonic basins. The Circum-Tibetan Plateau Basin-Range System is a gigantic deformation system and particular Himalayan tectonic domain in central-western China and is comparable to the Tibetan Plateau. In this system, northward and eastward developments of thrust deformations exhibit an arc-shaped area along the Kunlun-Altyn-Qilian-Longmenshan mountain belts, and further expand outward to the Altai-Yinshan-Luliangshan- Huayingshan mountain belts during the Late Cenozoic sustained collision of Indo-Asia. Intense intra-continental deformations lead ancient orogens to rejuvenate, young foreland basins to form in-between orogens and cratons, and thrusts to propagate from orogens to cratons in successive order. Driven by the Eurasia-Indian collision and its far field effects, both deformation and basin-range couplings in the arc-shaped area decrease from south to north. When a single basin-range unit is focused on, deformations become younger and younger together with more and more simple structural styles from piedmonts to craton in- teriors. In the Circum-Tibetan Plateau Basin-Range System, it presents three segmented tectonic deformational patterns: prop- agating in the west, growth-overthrusting in the middle, and slip-uplifting in the east. For natural gas exploration, two tectonic units, both the Paleozoic cratonic basins and the Cenozoic foreland thrust belts, are important because hydrocarbon in cen- tral-western China is preserved mainly in the Paleozoic cratonic paleo-highs and the Meso-Cenozoic foreland thrust belts, to- gether with characteristics of multiphrase hydrocarbon generation but late accumulation and enrichment.