The World Health Organization (WHO) standard assay for determining levels of the rabies virus neutralization antibody (RVNA) is the rapid fluorescent focus inhibition test (RFFIT), which is used to evaluate the immuni...The World Health Organization (WHO) standard assay for determining levels of the rabies virus neutralization antibody (RVNA) is the rapid fluorescent focus inhibition test (RFFIT), which is used to evaluate the immunity effect after vaccination against rabies. For RFFIT, CVS-11 was used as the challenge virus, BSR cells as the adapted cells, and WHO rabies immunoglobulin (WHO STD) as the reference serum in this study. With reference to WHO and Pasteur RFFIT procedures, a micro-RFFIT procedure adapted to our laboratory was produced, and its specificity and reproducibility were tested. We tested levels of RVNA in human serum samples after immunization with different human rabies vaccines (domestic purified Vero cell rabies vaccine (PVRV) and imported purified chick embryo cell vaccine (PCECV)) using different regimens (Zagreb regimen and Essen regimen). We analyzed the levels of RVNA, and compared the immune efficacy of domestic PVRV and imported PCECV using different immunization regimens. The results showed that the immune efficacy of domestic PVRV using the Zagreb regimen was as good as that of the imported PCECV, but virus antibodies were generated more rapidly with the Zagreb regimen than with the Essen regimen. The RFFIT procedure established in our laboratory will enhance the comprehensive detection ability of institutions involved in rabies surveillance in China.展开更多
As a result of recent breakthroughs in cancer immunotherapies, unprecedented and durable remission, and even cure, has been reported in some patients. Importantly, this progress has been achieved, not by the induction...As a result of recent breakthroughs in cancer immunotherapies, unprecedented and durable remission, and even cure, has been reported in some patients. Importantly, this progress has been achieved, not by the induction of immunity, but by the delivery of immunity in the form of engineered antibodies (cAbs) or effector T cells. However, these single-target technologies have failed to result in a therapeutic effect in some patients, and evidence suggests that further advances depend on an effective strategy for coping with cancer heterogeneity and dynamics. A synthetic immunity (SI) strategy is proposed to achieve this goal. The fundamental basis of SI involves the generation of a panel of cAbs and antibody-retargeted CTLs designed to destroy all cell lineages of a cancer with high specificity. This goal can be achieved only when the composition of the cAbs is determined using a systematic approach, i.e., selecting the antigens targeted by the cAbs based on an epitope-tree illustrating the clonal antigen architecture of the cancer. Integration of technologies that increase the epitope breadth, cAb affinity and T cell activity will further enhance the efficacy of SI. Using DNA vectors to express the eAbs will be a safe, effective and affordable solution.展开更多
基金National Department Public Benefit Research Foundation (201103032)
文摘The World Health Organization (WHO) standard assay for determining levels of the rabies virus neutralization antibody (RVNA) is the rapid fluorescent focus inhibition test (RFFIT), which is used to evaluate the immunity effect after vaccination against rabies. For RFFIT, CVS-11 was used as the challenge virus, BSR cells as the adapted cells, and WHO rabies immunoglobulin (WHO STD) as the reference serum in this study. With reference to WHO and Pasteur RFFIT procedures, a micro-RFFIT procedure adapted to our laboratory was produced, and its specificity and reproducibility were tested. We tested levels of RVNA in human serum samples after immunization with different human rabies vaccines (domestic purified Vero cell rabies vaccine (PVRV) and imported purified chick embryo cell vaccine (PCECV)) using different regimens (Zagreb regimen and Essen regimen). We analyzed the levels of RVNA, and compared the immune efficacy of domestic PVRV and imported PCECV using different immunization regimens. The results showed that the immune efficacy of domestic PVRV using the Zagreb regimen was as good as that of the imported PCECV, but virus antibodies were generated more rapidly with the Zagreb regimen than with the Essen regimen. The RFFIT procedure established in our laboratory will enhance the comprehensive detection ability of institutions involved in rabies surveillance in China.
基金supported by the government funds of Shenzhen,China(SFG 2012.566 and SKC 2012.237)
文摘As a result of recent breakthroughs in cancer immunotherapies, unprecedented and durable remission, and even cure, has been reported in some patients. Importantly, this progress has been achieved, not by the induction of immunity, but by the delivery of immunity in the form of engineered antibodies (cAbs) or effector T cells. However, these single-target technologies have failed to result in a therapeutic effect in some patients, and evidence suggests that further advances depend on an effective strategy for coping with cancer heterogeneity and dynamics. A synthetic immunity (SI) strategy is proposed to achieve this goal. The fundamental basis of SI involves the generation of a panel of cAbs and antibody-retargeted CTLs designed to destroy all cell lineages of a cancer with high specificity. This goal can be achieved only when the composition of the cAbs is determined using a systematic approach, i.e., selecting the antigens targeted by the cAbs based on an epitope-tree illustrating the clonal antigen architecture of the cancer. Integration of technologies that increase the epitope breadth, cAb affinity and T cell activity will further enhance the efficacy of SI. Using DNA vectors to express the eAbs will be a safe, effective and affordable solution.