To study the throughput scheduling problem under interference temperature in cognitive radio networks, an immune algorithm-based suboptimal method was proposed based on its NP-hard feature. The problem is modeled as a...To study the throughput scheduling problem under interference temperature in cognitive radio networks, an immune algorithm-based suboptimal method was proposed based on its NP-hard feature. The problem is modeled as a constrained optimization problem to maximize the total throughput of the secondary users( SUs). The mapping between the throughput scheduling problems and the immune algorithm is given. Suitable immune operators are designed such as binary antibody encoding, antibody initialization based on pre-knowledge, a proportional clone to its affinity and an adaptive mutation operator associated with the evolutionary generation. The simulation results showthat the proposed algorithm can obtain about 95% of the optimal throughput and operate with much lower liner computational complexity.展开更多
With a comprehensive consideration of multiple product types, past-sequence-dependent ( p-s-d ) setup times, and deterioration effects constraints in processes of wafer fabrication systems, a novel scheduling model ...With a comprehensive consideration of multiple product types, past-sequence-dependent ( p-s-d ) setup times, and deterioration effects constraints in processes of wafer fabrication systems, a novel scheduling model of multiple orders per job(MOJ) on identical parallel machines was developed and an immune genetic algorithm(IGA) was applied to solving the scheduling problem. A scheduling problem domain was described. A non-linear mathematical programming model was also set up with an objective function of minimizing total weighted earliness-tardlness penalties of the system. On the basis of the mathematical model, IGA was put forward. Based on the genetic algorithm (GA), the proposed algorithm (IGA) can generate feasible solutions and ensure the diversity of antibodies. In the process of immunization programming, to guarantee the algorithm's convergence performance, the modified rule of apparent tardiness cost with setups (ATCS) was presented. Finally, simulation experiments were designed, and the results indicated that the algorithm had good adaptability when the values of the constraints' characteristic parameters were changed and it verified the validity of the algorithm.展开更多
基金The National Natural Science Foundation of China(No.U150461361202099+2 种基金61201175U1204618)China Postdoctoral Science Foundation(No.2013M541586)
文摘To study the throughput scheduling problem under interference temperature in cognitive radio networks, an immune algorithm-based suboptimal method was proposed based on its NP-hard feature. The problem is modeled as a constrained optimization problem to maximize the total throughput of the secondary users( SUs). The mapping between the throughput scheduling problems and the immune algorithm is given. Suitable immune operators are designed such as binary antibody encoding, antibody initialization based on pre-knowledge, a proportional clone to its affinity and an adaptive mutation operator associated with the evolutionary generation. The simulation results showthat the proposed algorithm can obtain about 95% of the optimal throughput and operate with much lower liner computational complexity.
基金National Natural Science Foundations of China(No.61273035,No.71071115)
文摘With a comprehensive consideration of multiple product types, past-sequence-dependent ( p-s-d ) setup times, and deterioration effects constraints in processes of wafer fabrication systems, a novel scheduling model of multiple orders per job(MOJ) on identical parallel machines was developed and an immune genetic algorithm(IGA) was applied to solving the scheduling problem. A scheduling problem domain was described. A non-linear mathematical programming model was also set up with an objective function of minimizing total weighted earliness-tardlness penalties of the system. On the basis of the mathematical model, IGA was put forward. Based on the genetic algorithm (GA), the proposed algorithm (IGA) can generate feasible solutions and ensure the diversity of antibodies. In the process of immunization programming, to guarantee the algorithm's convergence performance, the modified rule of apparent tardiness cost with setups (ATCS) was presented. Finally, simulation experiments were designed, and the results indicated that the algorithm had good adaptability when the values of the constraints' characteristic parameters were changed and it verified the validity of the algorithm.