AIM:To explore the role of high-mobility group box 1 (HMGB1) protein during liver fibrogenesis and investigate the functional effects of HMGB1 gene silencing in hepatic stellate cells (HSCs) using siRNA.METHODS:Hepati...AIM:To explore the role of high-mobility group box 1 (HMGB1) protein during liver fibrogenesis and investigate the functional effects of HMGB1 gene silencing in hepatic stellate cells (HSCs) using siRNA.METHODS:Hepatic fibrosis in rats was induced through serial subcutaneous injections of dimethylnitrosamine,and expression of HMGB1 was detected by immunohistochemistry.HMGB1 siRNAs were developed and transiently transfected into HSC-T6 cells using Lipofectamine 2000.HMGB1 expression was evaluated by real-time polymerase chain reaction (PCR) and Western blotting analysis.Expression of α-smooth muscle actin (α-SMA) and collagen typesⅠand Ⅲ was evaluated by real-time PCR.Cell proliferation and the cell cycle were determined using the methyl thiazolyl tetrazolium method.Finally,collagen content in HSC supernatant was evaluated by an enzyme-linked immunosorbent assay.RESULTS:The results showed that HMGB1 was upregulated during liver fibrosis and that its expression was closely correlated with the deposition of collagen.siRNA molecules were successfully transfected into HSCs and induced inhibition of HMGB1 expression in a time-dependent manner.Moreover,HMGB1 siRNA treatment inhibited synthesis of α-SMA and collagen types Ⅰ and Ⅲ in transfected HSCs.CONCLUSION:This study suggests a significant functional role for HMGB1 in the development of liver fibrosis.It also demonstrates that downregulation of HMGB1 expression might be a potential strategy to treat liver fibrosis.展开更多
Constant alcohol consumption is a major cause of chronic liver disease, and there has been a growing concern regarding the increased mortality rates worldwide. Alcoholic liver diseases (ALDs) range from mild to more s...Constant alcohol consumption is a major cause of chronic liver disease, and there has been a growing concern regarding the increased mortality rates worldwide. Alcoholic liver diseases (ALDs) range from mild to more severe conditions, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The liver is enriched with innate immune cells (e.g. natural killer cells and Kupffer cells) and hepatic stellate cells (HSCs), and interestingly, emerging evidence suggests that innate immunity contributes to the development of ALDs (e.g. steatohepatitis and liver fibrosis). Indeed, HSCs play a crucial role in alcoholic steatosis via production of endocannabinoid and retinol metabolites. This review describes the roles of the innate immunity and HSCs in the pathogenesis of ALDs, and suggests therapeutic targets and strategies to assist in the reduction of ALD.展开更多
Objective To study the selective toxicity of immunotoxin (IT) on T cells in cord blood and simultaneously determine its effect on hematopoietic progenitor cells Methods The percentage of CD 5 and CD 8 T c...Objective To study the selective toxicity of immunotoxin (IT) on T cells in cord blood and simultaneously determine its effect on hematopoietic progenitor cells Methods The percentage of CD 5 and CD 8 T cell subsets in cord blood (CB) and bone marrow (BM) as well as peripheral blood (PB) was measured by immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti alkaline phosphatase (APAAP complexes) One way mixed lymphocyte cultures (MLC) were performed to compare the proliferative response of CB with that of PB The proliferative capability of cord blood T cells and T lymphocyte transformation capacity were evaluated in the presence of anti CD 8 or anti CD 5 immunotoxin by one way MLC and colorimetric MTT (tetrazolium) assay, respectively The effect of IT on the growth of hematopoietic progenitor cell of colony forming unit granulocyte and macrophage (CFU GM), burst forming unit erythroid(BFU E), multipotential hemotapoietic progenitors (CFU Mix) from CB were estimated by colony forming assays Results A certain proportion of CD 5 and CD 8 T cells existed in CB The alloproliferative capacity of CB was similar to that of PB CD 5: Ricin at a dosage of 1×10 10 -1×10 8 mmol/L and CD 8: Ricin concentration in the range of 1×10 9 -1×10 8 mmol/L effectively decreased both the proliferative capability of T cells in MLC during CB and T cell transformation Over the dosage of 1×10 10 -1×10 9 mmol/L, both kinds of IT didn't obviously affect the growth of hematopoietic progenitor cells Conclusion CD 5: Ricin and CD 8: Ricin may effectively deplete T cells and may not significantly inhibit the function of hemaptopoietic cells at a specific dosage展开更多
Anti-CD19 chimeric antigen receptor-modified T(CAR-T-19) cells have emerged as a powerful targeted immunotherapy for B-cell lineage acute lymphoblastic leukemia with a remarkable clinical response in recent trials. No...Anti-CD19 chimeric antigen receptor-modified T(CAR-T-19) cells have emerged as a powerful targeted immunotherapy for B-cell lineage acute lymphoblastic leukemia with a remarkable clinical response in recent trials. Nonetheless, few data are available on the subsequent clinical monitoring and treatment of the patients, especially those with disease recurrence after CAR-T-19 cell infusion. Here, we analyzed three patients who survived after our phase I clinical trial and who were studied by means of biomarkers reflecting persistence of CAR-T-19 cells in vivo and predictive factors directing further treatment. One patient achieved 9-week sustained complete remission and subsequently received an allogeneic hematopoietic stem cell transplant. Another patient who showed relapse after 20 weeks without detectable leukemia in the cerebrospinal fluid after CAR-T-19 cell treatment was able to achieve a morphological remission under the influence of stand-alone low-dose chemotherapeutic agents. The third patient gradually developed extensive extramedullary involvement in tissues with scarce immune-cell infiltration during a long period of hematopoietic remission after CAR-T-19 cell therapy. Long-term and discontinuous increases in serum cytokines(mainly interleukin 6 and C-reactive protein) were identified in two patients(Nos. 1 and 6) even though only a low copy number of CAR molecules could be detected in their peripheral blood. This finding was suggestive of persistent functional activity of CAR-T-19 cells. Combined analyses of laboratory biomarkers with their clinical manifestations before and after salvage treatment showed that the persistent immunosurveillance mediated by CAR-T-19 cells would inevitably potentiate the leukemia-killing effectiveness of subsequent chemotherapy in patients who showed relapse after CAR-T-19-induced remission.展开更多
基金Supported by The Select and Train Outstanding Young Teach-ers Foundation of Shanghai,No.jdy08086WUJieping Experimental Diagnosis of Liver Disease Medical Foundation,No.LDWMF-SY-2011B009
文摘AIM:To explore the role of high-mobility group box 1 (HMGB1) protein during liver fibrogenesis and investigate the functional effects of HMGB1 gene silencing in hepatic stellate cells (HSCs) using siRNA.METHODS:Hepatic fibrosis in rats was induced through serial subcutaneous injections of dimethylnitrosamine,and expression of HMGB1 was detected by immunohistochemistry.HMGB1 siRNAs were developed and transiently transfected into HSC-T6 cells using Lipofectamine 2000.HMGB1 expression was evaluated by real-time polymerase chain reaction (PCR) and Western blotting analysis.Expression of α-smooth muscle actin (α-SMA) and collagen typesⅠand Ⅲ was evaluated by real-time PCR.Cell proliferation and the cell cycle were determined using the methyl thiazolyl tetrazolium method.Finally,collagen content in HSC supernatant was evaluated by an enzyme-linked immunosorbent assay.RESULTS:The results showed that HMGB1 was upregulated during liver fibrosis and that its expression was closely correlated with the deposition of collagen.siRNA molecules were successfully transfected into HSCs and induced inhibition of HMGB1 expression in a time-dependent manner.Moreover,HMGB1 siRNA treatment inhibited synthesis of α-SMA and collagen types Ⅰ and Ⅲ in transfected HSCs.CONCLUSION:This study suggests a significant functional role for HMGB1 in the development of liver fibrosis.It also demonstrates that downregulation of HMGB1 expression might be a potential strategy to treat liver fibrosis.
基金Supported by A grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare and Family Affairs, South Korea (A090183)
文摘Constant alcohol consumption is a major cause of chronic liver disease, and there has been a growing concern regarding the increased mortality rates worldwide. Alcoholic liver diseases (ALDs) range from mild to more severe conditions, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The liver is enriched with innate immune cells (e.g. natural killer cells and Kupffer cells) and hepatic stellate cells (HSCs), and interestingly, emerging evidence suggests that innate immunity contributes to the development of ALDs (e.g. steatohepatitis and liver fibrosis). Indeed, HSCs play a crucial role in alcoholic steatosis via production of endocannabinoid and retinol metabolites. This review describes the roles of the innate immunity and HSCs in the pathogenesis of ALDs, and suggests therapeutic targets and strategies to assist in the reduction of ALD.
文摘Objective To study the selective toxicity of immunotoxin (IT) on T cells in cord blood and simultaneously determine its effect on hematopoietic progenitor cells Methods The percentage of CD 5 and CD 8 T cell subsets in cord blood (CB) and bone marrow (BM) as well as peripheral blood (PB) was measured by immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti alkaline phosphatase (APAAP complexes) One way mixed lymphocyte cultures (MLC) were performed to compare the proliferative response of CB with that of PB The proliferative capability of cord blood T cells and T lymphocyte transformation capacity were evaluated in the presence of anti CD 8 or anti CD 5 immunotoxin by one way MLC and colorimetric MTT (tetrazolium) assay, respectively The effect of IT on the growth of hematopoietic progenitor cell of colony forming unit granulocyte and macrophage (CFU GM), burst forming unit erythroid(BFU E), multipotential hemotapoietic progenitors (CFU Mix) from CB were estimated by colony forming assays Results A certain proportion of CD 5 and CD 8 T cells existed in CB The alloproliferative capacity of CB was similar to that of PB CD 5: Ricin at a dosage of 1×10 10 -1×10 8 mmol/L and CD 8: Ricin concentration in the range of 1×10 9 -1×10 8 mmol/L effectively decreased both the proliferative capability of T cells in MLC during CB and T cell transformation Over the dosage of 1×10 10 -1×10 9 mmol/L, both kinds of IT didn't obviously affect the growth of hematopoietic progenitor cells Conclusion CD 5: Ricin and CD 8: Ricin may effectively deplete T cells and may not significantly inhibit the function of hemaptopoietic cells at a specific dosage
基金supported by the National Science Foundation for Young Scientists of China (81402567, 81402566, 81472612)Bejing Nova Program (XX2016086)+3 种基金China Postdoctoral Science Foundation Grant (201150M1533)Science and Technology Planning Project of Beijing City (Z151100003915076 to Weidong Han)National Natural Science Foundation of China (31270820, 81230061 to Weidong Han)People’s Republic of China Support Fund (2015PC-TSYS-2013 to Suxia Li)
文摘Anti-CD19 chimeric antigen receptor-modified T(CAR-T-19) cells have emerged as a powerful targeted immunotherapy for B-cell lineage acute lymphoblastic leukemia with a remarkable clinical response in recent trials. Nonetheless, few data are available on the subsequent clinical monitoring and treatment of the patients, especially those with disease recurrence after CAR-T-19 cell infusion. Here, we analyzed three patients who survived after our phase I clinical trial and who were studied by means of biomarkers reflecting persistence of CAR-T-19 cells in vivo and predictive factors directing further treatment. One patient achieved 9-week sustained complete remission and subsequently received an allogeneic hematopoietic stem cell transplant. Another patient who showed relapse after 20 weeks without detectable leukemia in the cerebrospinal fluid after CAR-T-19 cell treatment was able to achieve a morphological remission under the influence of stand-alone low-dose chemotherapeutic agents. The third patient gradually developed extensive extramedullary involvement in tissues with scarce immune-cell infiltration during a long period of hematopoietic remission after CAR-T-19 cell therapy. Long-term and discontinuous increases in serum cytokines(mainly interleukin 6 and C-reactive protein) were identified in two patients(Nos. 1 and 6) even though only a low copy number of CAR molecules could be detected in their peripheral blood. This finding was suggestive of persistent functional activity of CAR-T-19 cells. Combined analyses of laboratory biomarkers with their clinical manifestations before and after salvage treatment showed that the persistent immunosurveillance mediated by CAR-T-19 cells would inevitably potentiate the leukemia-killing effectiveness of subsequent chemotherapy in patients who showed relapse after CAR-T-19-induced remission.