期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于强化LSTM的网络高隐蔽性入侵轨迹预测研究
1
作者 徐李阳 王晨飞 +2 位作者 穆松鹤 杨自兴 马建勋 《电子设计工程》 2024年第21期104-107,112,共5页
网络高隐蔽性入侵信息的维度难以确定,导致入侵轨迹预测困难增加,因此研究基于强化LSTM的网络高隐蔽性入侵轨迹预测方法。设置强化LSTM预测模型基础架构,根据历史数据特征取值结果,求解标记参数,利用这些参数标记入侵数据轨迹节点。确... 网络高隐蔽性入侵信息的维度难以确定,导致入侵轨迹预测困难增加,因此研究基于强化LSTM的网络高隐蔽性入侵轨迹预测方法。设置强化LSTM预测模型基础架构,根据历史数据特征取值结果,求解标记参数,利用这些参数标记入侵数据轨迹节点。确定高隐蔽性入侵行为的表现强度从而确定入侵向量。结合入侵信息维度实现网络高隐蔽性入侵轨迹预测。实验结果表明,在强化LSTM模型的作用下,高隐蔽性入侵信息维度的预测结果完全属于该信息所处轨迹维度参数实际取值范围之内,说明该方法的预测结果更为精准。 展开更多
关键词 强化LSTM模型 网络入侵轨迹 历史数据 入侵行为 入侵向量 信息轨迹维度
下载PDF
基于支持向量机的网络入侵检测算法综述 被引量:1
2
作者 王云鹏 张浩 《科学技术创新》 2017年第25期136-137,共2页
在如今的互联网时代,网络安全备受关注,诸多学者为了提高网络入侵检测系统的正确率,增强检测模型的泛化能力,不断提出各种网络入侵检测的模型进行实验。为了方便各学者更快、更深入的了解网络入侵的现状及大量的网络入侵检测算法模型,... 在如今的互联网时代,网络安全备受关注,诸多学者为了提高网络入侵检测系统的正确率,增强检测模型的泛化能力,不断提出各种网络入侵检测的模型进行实验。为了方便各学者更快、更深入的了解网络入侵的现状及大量的网络入侵检测算法模型,本文研究了近几年有关网络入侵检测论文的实验成果,为学者们介绍论文中实验步骤的概括及检测方法模型的优缺点,使学者们快捷的了解到某种检测方法模型的要领,从而进行更深入的研究。 展开更多
关键词 网络入侵检测 支持向量 算法
下载PDF
Intrusion detection using rough set classification 被引量:16
3
作者 张连华 张冠华 +2 位作者 郁郎 张洁 白英彩 《Journal of Zhejiang University Science》 EI CSCD 2004年第9期1076-1086,共11页
Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learn... Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of'IF-THEN' rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set). 展开更多
关键词 Intrusion detection Rough set classification Support vector machine Genetic algorithm
下载PDF
Hybrid Optimization of Support Vector Machine for Intrusion Detection
4
作者 席福利 郁松年 +1 位作者 HAO Wei 《Journal of Donghua University(English Edition)》 EI CAS 2005年第3期51-56,共6页
Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques.... Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques. But the randomicity of parameter selection in its implement often prevents it achieving expected performance. By utilizing genetic algorithm (GA) to optimize the parameters in data preprocessing and the training model of SVM simultaneously, a hybrid optimization algorithm is proposed in the paper to address this problem. The experimental results demonstrate that it’s an effective method and can improve the performance of SVM-based intrusion detection system further. 展开更多
关键词 intrusion detection system IDS) support vector machine SVM) genetic algorithm GA system call trace ξα-estimator sequential minimal optimization(SMO)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部