期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
利用改进DBSCAN聚类实现多步式网络入侵类别检测 被引量:11
1
作者 罗文华 许彩滇 《小型微型计算机系统》 CSCD 北大核心 2020年第8期1725-1731,共7页
面对非平衡的网络行为数据,单步检测方法难以高效准确地检测全部类别的网络行为.为提升网络入侵类别的检测能力,提出多步式聚类检测思路.首先,基于SVM-KNN算法改进Fisher评分方法,约简数据集维度,提高评分准确度.针对DBSCAN聚类需要人... 面对非平衡的网络行为数据,单步检测方法难以高效准确地检测全部类别的网络行为.为提升网络入侵类别的检测能力,提出多步式聚类检测思路.首先,基于SVM-KNN算法改进Fisher评分方法,约简数据集维度,提高评分准确度.针对DBSCAN聚类需要人为设定参数的不足,将拐点半径概念引入聚类算法中,提出基于数据密度分布的自适应设参算法.然后,基于改进Fisher评分确定多步检测顺序,通过多步聚类减少大类数据占比,使非平衡数据均衡化,进而实现对非平衡网络行为数据的全类别准确检测.多步式检测通过NSL-KDD数据集予以实验验证,实验结果表明该方法具有稳定的检测效果,各种类别的网络入侵均可被良好检测,特别是在罕见攻击类别U2R方面,准确率明显优于其他单步检测算法. 展开更多
关键词 入侵类别 多步检测 Fisher评分 DBSCAN聚类 拐点半径
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部