The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S)...The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism.展开更多
This paper presents 2.5D scattering of incident plane SH waves by a canyon in layered half-space by the indirect boundary element method (IBEM). The free field response is carried out to give the displacements and str...This paper presents 2.5D scattering of incident plane SH waves by a canyon in layered half-space by the indirect boundary element method (IBEM). The free field response is carried out to give the displacements and stresses on the line which forms boundary of the canyon. The fictitious uniform moving loads are applied to the same line to calculate the Green's functions for the displacements and stresses. The amplitudes of the loads are determined by the boundary conditions. The displacements due to the free field and from the fictitious uniform moving loads have to be added to obtain the whole motion. The numerical results are carried out for the cases of a canyon in homogenous and in one layer over bedrock. The results show that the 2.5D wave scattering problem is essentially different from the 2D case, and there exist distinct differences between the wave amplification by a canyon in layered half-space and that in homogeneous half-space. The reasons for the distinct difference are explored, and the effects of the thickness and stiffness of the layer on the amplification are discussed.展开更多
A high order boundary element method was developed for the complex velocity potential problem. The method ensures not only the continuity of the potential at the nodes of each element but also the velocity. It can be ...A high order boundary element method was developed for the complex velocity potential problem. The method ensures not only the continuity of the potential at the nodes of each element but also the velocity. It can be applied to a variety of velocity potential problems. The present paper, however, focused on its application to the problem of water entry of a wedge with varying speed. The continuity of the velocity achieved herein is particularly important for this kind of nonlinear free surface flow problem, because when the time stepping method is used, the free surface is updated through the velocity obtained at each node and the accuracy of the velocity is therefore crucial. Calculation was made for a case when the distance S that the wedge has travelled and time t follow the relationship s=Dtα, where D and α are constants, which is found to lead to a self similar flow field when the effect due to gravity is ignored.展开更多
An iterative direct-forcing immersed boundary method is extended and used to solve convection heat transfer problems.The pressure,momentum source,and heat source at immersed boundary points are calculated simultaneous...An iterative direct-forcing immersed boundary method is extended and used to solve convection heat transfer problems.The pressure,momentum source,and heat source at immersed boundary points are calculated simultaneously to achieve the best coupling.Solutions of convection heat transfer problems with both Dirichlet and Neumann boundary conditions are presented.Two approaches for the implementation of Neumann boundary condition,i.e.direct and indirect methods,are introduced and compared in terms of accuracy and computational efficiency.Validation test cases include forced convection on a heated cylinder in an unbounded flow field and mixed convection around a circular body in a lid-driven cavity.Furthermore,the proposed method is applied to study the mixed convection around a heated rotating cylinder in a square enclosure with both iso-heat flux and iso-thermal boundary conditions.Computational results show that the order of accuracy of the indirect method is less than the direct method.However,the indirect method takes less computational time both in terms of the implementation of the boundary condition and the post processing time required to compute the heat transfer variables such as the Nusselt number.It is concluded that the iterative direct-forcing immersed boundary method is a powerful technique for the solution of convection heat transfer problems with stationary/moving boundaries and various boundary conditions.展开更多
The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be s...The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be solved by the direct stiffness method, and the scattering wave response is calculated by Green’s functions of distributed loads acting on inclined lines in a layered half-space. The method is verified by comparing its results with literature and numerical analyses are performed by taking the amplification of incident plane P-waves by an alluvial valley in one soil layer resting on bedrock as an example. The results show that there exist distinct differences between the wave amplification by an alluvial valley embedded in layered half-space and that in homogeneous half-space and there is interaction between the valley and the soil layer. The amplitudes are relatively large when incident frequencies are close to the soil layer’s resonant frequencies.展开更多
The indirect boundary element method (IBEM) is used to study three-dimensional scattering of obliquely incident plane SH waves by an alluvial valley embedded in a layered half-space. The free-field response of the l...The indirect boundary element method (IBEM) is used to study three-dimensional scattering of obliquely incident plane SH waves by an alluvial valley embedded in a layered half-space. The free-field response of the layered half-space is calculated by the direct stiffness method, and dynamic Green's functions of moving distributed loads acting on inclined lines in a layered half-space are calculated to simulate the scattering wave field. The presented method yields very accurate results since the three-dimensional dynamic stiffness matrix is exact and the moving distributed loads can act directly on the valley boundary without singularity. Numerical results and analyses are performed for amplification of obliquely incident plane SH waves around an alluvial valley in a uniform half-space and in single layer over half-space. The results show that the three-dimensional responses are distinctly different from the two-dimensional responses, and the displacement amplitudes around alluvial valleys in a uniform haft-space are obviously different from those in a layered half-space.展开更多
Although G-coordinate is one of the most popular methods used in marine and estuarine modeling, it has long suffered from the so-called "steep boundary problem", namely, the PGF problem. In this paper, a new method ...Although G-coordinate is one of the most popular methods used in marine and estuarine modeling, it has long suffered from the so-called "steep boundary problem", namely, the PGF problem. In this paper, a new method called the "σ-sharpen immersed boundary method" (σ-SIBM) is put forward. In this method, the virtual flat bottom boundary is creatively introduced in regions with the steep boundary and is taken as the boundary of numerical domain. By this, OH/Ox of numerical domain changes to be a controllable value and the steep bottom problem is then transformed to the non-conforming boundary problem, which is, in turn, solved by the SIBM. The accuracy and efficiency of the σ-sharpen immersed boundary method (σ-SIBM) has been showed by both comparative theoretical analysis and classical numerical tests. First, it is shown that the σ-SIBM is more effective than the z-level method, in that σ-SIBM needs special treatment only in the steep section, but the z-level method needs the special treatment in each grid note. Second, it is superior to the p-method in that it is not restricted by the density distribution. This paper revisits the classical seamount numerical test used in numerous studies to prove the sigma errors of the pressure gradient force (PGFE) and their long-term effects on circulation. It can be seen that, as for the maximum erroneous velocity and kinetic energy, the value of σ-SIBM is much less than that of the z-level method and the traditional σ-method.展开更多
The success of compliant mechanism design by structural topology optimization approach depends,to a large extent,on its structural geometry representation scheme.In this work,a novel representation scheme based on pai...The success of compliant mechanism design by structural topology optimization approach depends,to a large extent,on its structural geometry representation scheme.In this work,a novel representation scheme based on pairs of curves is presented.In the representation,the structure is characterized by a set of input/output(I/O) regions.While it is still unknown how the rest of the design space will be occupied by the structure,the I/O regions must exist somewhere because any structure must have parts which interact with its surroundings by way of at least one loading region,one support region,and one output region.For a valid structural design,pairs of Bezier curves are used to connect I/O regions in order to form one single connected load-bearing structure.The boundary is explicitly described,so the need for smoothening of the blurred and jagged edges can be avoided by developing such a representation scheme to directly generate smooth boundary structures.With the scheme,shape and topology can be optimized simultaneously,and the obtained topology solutions have no check-board phenomena nor intermediate zones.A multi-objective genetic algorithm is then applied to couple with the representation scheme for defining and encoding the structural geometry in the form of graph.The solution framework is integrated with a nonlinear fixed grid finite element method(FG-FEM) code for large-displacement analyses of the compliant structures.Simulation results from a displacement inverter indicated that the proposed representation scheme is appropriate.展开更多
The problem of shock interaction with a rigid circular cylinder has been investigated using a compressible immersed boundary method coupled with high-order weighted-essentially non-oscillatory(WENO) scheme.First,the a...The problem of shock interaction with a rigid circular cylinder has been investigated using a compressible immersed boundary method coupled with high-order weighted-essentially non-oscillatory(WENO) scheme.First,the accuracy of the developed code is validated.Then,influences of the incident shock Mach number on the flow-field structure and dynamic drag coefficient,as well as time evolution of the flow field are studied.For different shock Mach number,the flow structure shows very different features.At a given dimensionless time,both the normalized shock detachment distance and the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder decreases with increasing shock Mach number.However,location of the upper triple point varies non-monotonically with shock Mach number.For a case with given shock Mach number,the trajectory of the upper triple point and the time evolution of the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder can both be predicted by linear correlation.Nevertheless,the time evolution of the normalized shock detachment distance is biased to be non-linear.Meanwhile,time evolution of force exerted on the cylinder is quite unsteady for a case with given shock Mach number and given cylinder diameter.For small shock Mach number,there exists a negative valley,and it disappears when the incident shock Mach number increases to a large value,e.g.,1.7.Furthermore,correlations to predict the occurrence of the peak drag and its value under different shock Mach numbers have been proposed.展开更多
基金Supported by the Aeronautical Science Foundation of China(20111453012)the National Defense Pre-Research Foundation of China(9140A13040111HK0329)~~
文摘The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism.
基金supported by National Natural Science Foundation of China (Nos. 50908156 and 50978183)
文摘This paper presents 2.5D scattering of incident plane SH waves by a canyon in layered half-space by the indirect boundary element method (IBEM). The free field response is carried out to give the displacements and stresses on the line which forms boundary of the canyon. The fictitious uniform moving loads are applied to the same line to calculate the Green's functions for the displacements and stresses. The amplitudes of the loads are determined by the boundary conditions. The displacements due to the free field and from the fictitious uniform moving loads have to be added to obtain the whole motion. The numerical results are carried out for the cases of a canyon in homogenous and in one layer over bedrock. The results show that the 2.5D wave scattering problem is essentially different from the 2D case, and there exist distinct differences between the wave amplification by a canyon in layered half-space and that in homogeneous half-space. The reasons for the distinct difference are explored, and the effects of the thickness and stiffness of the layer on the amplification are discussed.
文摘A high order boundary element method was developed for the complex velocity potential problem. The method ensures not only the continuity of the potential at the nodes of each element but also the velocity. It can be applied to a variety of velocity potential problems. The present paper, however, focused on its application to the problem of water entry of a wedge with varying speed. The continuity of the velocity achieved herein is particularly important for this kind of nonlinear free surface flow problem, because when the time stepping method is used, the free surface is updated through the velocity obtained at each node and the accuracy of the velocity is therefore crucial. Calculation was made for a case when the distance S that the wedge has travelled and time t follow the relationship s=Dtα, where D and α are constants, which is found to lead to a self similar flow field when the effect due to gravity is ignored.
文摘An iterative direct-forcing immersed boundary method is extended and used to solve convection heat transfer problems.The pressure,momentum source,and heat source at immersed boundary points are calculated simultaneously to achieve the best coupling.Solutions of convection heat transfer problems with both Dirichlet and Neumann boundary conditions are presented.Two approaches for the implementation of Neumann boundary condition,i.e.direct and indirect methods,are introduced and compared in terms of accuracy and computational efficiency.Validation test cases include forced convection on a heated cylinder in an unbounded flow field and mixed convection around a circular body in a lid-driven cavity.Furthermore,the proposed method is applied to study the mixed convection around a heated rotating cylinder in a square enclosure with both iso-heat flux and iso-thermal boundary conditions.Computational results show that the order of accuracy of the indirect method is less than the direct method.However,the indirect method takes less computational time both in terms of the implementation of the boundary condition and the post processing time required to compute the heat transfer variables such as the Nusselt number.It is concluded that the iterative direct-forcing immersed boundary method is a powerful technique for the solution of convection heat transfer problems with stationary/moving boundaries and various boundary conditions.
基金Supported by National Natural Science Foundation of China (No. 50978156 and No. 50908183)
文摘The indirect boundary element method (IBEM) is used to study the surface motion of an alluvial valley in layered half-space for incident plane P-waves based on Wolf’s theory. Firstly, the free field response can be solved by the direct stiffness method, and the scattering wave response is calculated by Green’s functions of distributed loads acting on inclined lines in a layered half-space. The method is verified by comparing its results with literature and numerical analyses are performed by taking the amplification of incident plane P-waves by an alluvial valley in one soil layer resting on bedrock as an example. The results show that there exist distinct differences between the wave amplification by an alluvial valley embedded in layered half-space and that in homogeneous half-space and there is interaction between the valley and the soil layer. The amplitudes are relatively large when incident frequencies are close to the soil layer’s resonant frequencies.
基金sponsored by Project of Natural Science Foundation of China(50908156,50978183)the Application Basis and Front Technology Research Progamme of Tianjin Municipality under Grant 12JCZDJC29000
文摘The indirect boundary element method (IBEM) is used to study three-dimensional scattering of obliquely incident plane SH waves by an alluvial valley embedded in a layered half-space. The free-field response of the layered half-space is calculated by the direct stiffness method, and dynamic Green's functions of moving distributed loads acting on inclined lines in a layered half-space are calculated to simulate the scattering wave field. The presented method yields very accurate results since the three-dimensional dynamic stiffness matrix is exact and the moving distributed loads can act directly on the valley boundary without singularity. Numerical results and analyses are performed for amplification of obliquely incident plane SH waves around an alluvial valley in a uniform half-space and in single layer over half-space. The results show that the three-dimensional responses are distinctly different from the two-dimensional responses, and the displacement amplitudes around alluvial valleys in a uniform haft-space are obviously different from those in a layered half-space.
基金supported by the National Natural Science Foundation of China(Grant Nos.51209239,51109194)"985 Project"of Minzu Univer-sity of China(Grant No.MUC98507-08)
文摘Although G-coordinate is one of the most popular methods used in marine and estuarine modeling, it has long suffered from the so-called "steep boundary problem", namely, the PGF problem. In this paper, a new method called the "σ-sharpen immersed boundary method" (σ-SIBM) is put forward. In this method, the virtual flat bottom boundary is creatively introduced in regions with the steep boundary and is taken as the boundary of numerical domain. By this, OH/Ox of numerical domain changes to be a controllable value and the steep bottom problem is then transformed to the non-conforming boundary problem, which is, in turn, solved by the SIBM. The accuracy and efficiency of the σ-sharpen immersed boundary method (σ-SIBM) has been showed by both comparative theoretical analysis and classical numerical tests. First, it is shown that the σ-SIBM is more effective than the z-level method, in that σ-SIBM needs special treatment only in the steep section, but the z-level method needs the special treatment in each grid note. Second, it is superior to the p-method in that it is not restricted by the density distribution. This paper revisits the classical seamount numerical test used in numerous studies to prove the sigma errors of the pressure gradient force (PGFE) and their long-term effects on circulation. It can be seen that, as for the maximum erroneous velocity and kinetic energy, the value of σ-SIBM is much less than that of the z-level method and the traditional σ-method.
基金supported by the State Key Laboratory of Robotics and System (HIT)the National Science Fund for Distinguished Young Scholars(Grant No. 50825504)+1 种基金the United Fund of Natural Science Foundation of China and Guangdong Province (Grant No. U0934004),Project GDUPS(2010)the Fundamental Research Funds for the Central Universities(Grant Nos. 2009220040 and 2012ZP0004)
文摘The success of compliant mechanism design by structural topology optimization approach depends,to a large extent,on its structural geometry representation scheme.In this work,a novel representation scheme based on pairs of curves is presented.In the representation,the structure is characterized by a set of input/output(I/O) regions.While it is still unknown how the rest of the design space will be occupied by the structure,the I/O regions must exist somewhere because any structure must have parts which interact with its surroundings by way of at least one loading region,one support region,and one output region.For a valid structural design,pairs of Bezier curves are used to connect I/O regions in order to form one single connected load-bearing structure.The boundary is explicitly described,so the need for smoothening of the blurred and jagged edges can be avoided by developing such a representation scheme to directly generate smooth boundary structures.With the scheme,shape and topology can be optimized simultaneously,and the obtained topology solutions have no check-board phenomena nor intermediate zones.A multi-objective genetic algorithm is then applied to couple with the representation scheme for defining and encoding the structural geometry in the form of graph.The solution framework is integrated with a nonlinear fixed grid finite element method(FG-FEM) code for large-displacement analyses of the compliant structures.Simulation results from a displacement inverter indicated that the proposed representation scheme is appropriate.
基金supported by the National Natural Science Foundation of China(Grant Nos.51576176&91541202)the Fundamental Research Funds for the Central Universities(Grant No.2016FZA4008)the Postdoctoral Science Foundation of China(Grant No.2015M581928)
文摘The problem of shock interaction with a rigid circular cylinder has been investigated using a compressible immersed boundary method coupled with high-order weighted-essentially non-oscillatory(WENO) scheme.First,the accuracy of the developed code is validated.Then,influences of the incident shock Mach number on the flow-field structure and dynamic drag coefficient,as well as time evolution of the flow field are studied.For different shock Mach number,the flow structure shows very different features.At a given dimensionless time,both the normalized shock detachment distance and the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder decreases with increasing shock Mach number.However,location of the upper triple point varies non-monotonically with shock Mach number.For a case with given shock Mach number,the trajectory of the upper triple point and the time evolution of the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder can both be predicted by linear correlation.Nevertheless,the time evolution of the normalized shock detachment distance is biased to be non-linear.Meanwhile,time evolution of force exerted on the cylinder is quite unsteady for a case with given shock Mach number and given cylinder diameter.For small shock Mach number,there exists a negative valley,and it disappears when the incident shock Mach number increases to a large value,e.g.,1.7.Furthermore,correlations to predict the occurrence of the peak drag and its value under different shock Mach numbers have been proposed.