Large quantities of ballast water discharge from ocean going ships in sea ports of China is one of the important factorswhich cause the spread of aquatic nonindigenous harmful species isolated geographically by waters...Large quantities of ballast water discharge from ocean going ships in sea ports of China is one of the important factorswhich cause the spread of aquatic nonindigenous harmful species isolated geographically by waters,the deteriorating environment of the near-shore water area and the frequent outbreaks of red tides.In this paper,the total amount of the ballast water input estimation model for entry ships in Chinese ports was established.The information of foreign trade shipping and the import and export goods released publicly by the State Department of Transportation and the State General Administration of Customs were investigated.And then,the input features and its ecological environment risk of ballast water in China's offshore entry ships from2007to2012were analyzed based on the established total input amounts of ballast water from entry ships to Chinese sea ports together with the ballast water input ratio of the five major port-groups in China.The results show that:the total ballast water input amounts from entry ships of the five major port-groups in China are extremely imbalanced.The most developed Yangtze River Delta in economy has the biggest total ballast water input amounts,103.61million tons in2012.The second is the Circum-Bohai Sea Region(73.66million tons)and the third is the Pearl River Delta(67.24million tons).The total ballast water input amounts of the northwest and the southwest coastal areas are less,only16.57and5.71million tons respectively.The large quantity of entry ships’ballast water discharge has been an enormous threat to ecological environment of our country's sea areas,especially to economically developed regions.展开更多
An improved 3-D ECOM-si model was used to study the impact of seasonal tide variation on saltwater intrusion into the Changjiang River estuary, especially at the bifurcation of the North Branch (NB) and the South Br...An improved 3-D ECOM-si model was used to study the impact of seasonal tide variation on saltwater intrusion into the Changjiang River estuary, especially at the bifurcation of the North Branch (NB) and the South Branch (SB). The study assumes that the fiver discharge and wind are constant. The model successfully reproduced the saltwater intrusion. During spring tide, there is water and salt spillover (WSO and SSO) from the NB into the SB, and tidally averaged (net) water and salt fluxes are 985 m3/s and 24.8 ton/s, respectively. During neap tide, the WSO disappears and its net water flux is 122 m3/s. Meanwhile, the SSO continues, with net salt flux of 1.01 ton/s, much smaller than during spring tide. Because the tidal range during spring tide is smaller in June than in March, overall saltwater intrusion is weaker in June than in March during that tidal period. However, the WSO and SSO still exist in June. Net water and salt fluxes in that month are 622 m3/s and 15.35 ton/s, respectively, decreasing by 363 m3/s and 9.45 ton/s over those in March. Because tidal range during neap tide is greater in June than in March, saltwater intrusion in June is stronger than in March during that tidal period. The WSO and SSO appear in June, with net water and salt fluxes of 280 m3/s and 8.55 ton/s, respectively, increasing by 402 m3/s and 7.54 ton/s over those in March. Saltwater intrusion in the estuary is controlled by the fiver discharge, semi-diurnal flood-ebb tide, semi-monthly spring or neap tide, and seasonal tide variation.展开更多
文摘Large quantities of ballast water discharge from ocean going ships in sea ports of China is one of the important factorswhich cause the spread of aquatic nonindigenous harmful species isolated geographically by waters,the deteriorating environment of the near-shore water area and the frequent outbreaks of red tides.In this paper,the total amount of the ballast water input estimation model for entry ships in Chinese ports was established.The information of foreign trade shipping and the import and export goods released publicly by the State Department of Transportation and the State General Administration of Customs were investigated.And then,the input features and its ecological environment risk of ballast water in China's offshore entry ships from2007to2012were analyzed based on the established total input amounts of ballast water from entry ships to Chinese sea ports together with the ballast water input ratio of the five major port-groups in China.The results show that:the total ballast water input amounts from entry ships of the five major port-groups in China are extremely imbalanced.The most developed Yangtze River Delta in economy has the biggest total ballast water input amounts,103.61million tons in2012.The second is the Circum-Bohai Sea Region(73.66million tons)and the third is the Pearl River Delta(67.24million tons).The total ballast water input amounts of the northwest and the southwest coastal areas are less,only16.57and5.71million tons respectively.The large quantity of entry ships’ballast water discharge has been an enormous threat to ecological environment of our country's sea areas,especially to economically developed regions.
基金Supported by the National Basic Science Research Program of Global Change Research(No.2010CB951201)the Funds for Creative Research Groups of China(No.41021064)the Marine Special Program for Scientific Research on Public Causes(No.201005019)
文摘An improved 3-D ECOM-si model was used to study the impact of seasonal tide variation on saltwater intrusion into the Changjiang River estuary, especially at the bifurcation of the North Branch (NB) and the South Branch (SB). The study assumes that the fiver discharge and wind are constant. The model successfully reproduced the saltwater intrusion. During spring tide, there is water and salt spillover (WSO and SSO) from the NB into the SB, and tidally averaged (net) water and salt fluxes are 985 m3/s and 24.8 ton/s, respectively. During neap tide, the WSO disappears and its net water flux is 122 m3/s. Meanwhile, the SSO continues, with net salt flux of 1.01 ton/s, much smaller than during spring tide. Because the tidal range during spring tide is smaller in June than in March, overall saltwater intrusion is weaker in June than in March during that tidal period. However, the WSO and SSO still exist in June. Net water and salt fluxes in that month are 622 m3/s and 15.35 ton/s, respectively, decreasing by 363 m3/s and 9.45 ton/s over those in March. Because tidal range during neap tide is greater in June than in March, saltwater intrusion in June is stronger than in March during that tidal period. The WSO and SSO appear in June, with net water and salt fluxes of 280 m3/s and 8.55 ton/s, respectively, increasing by 402 m3/s and 7.54 ton/s over those in March. Saltwater intrusion in the estuary is controlled by the fiver discharge, semi-diurnal flood-ebb tide, semi-monthly spring or neap tide, and seasonal tide variation.