融合传统动态随机访问存储器(Dynamic Random Access Memory,DRAM)与新型非易失性内存(NonVolatile Memory,NVM)可构建平行架构或层次架构的异构内存系统.平行架构的异构内存系统往往需要通过页迁移技术把热点数据从NVM迁移到DRAM以提...融合传统动态随机访问存储器(Dynamic Random Access Memory,DRAM)与新型非易失性内存(NonVolatile Memory,NVM)可构建平行架构或层次架构的异构内存系统.平行架构的异构内存系统往往需要通过页迁移技术把热点数据从NVM迁移到DRAM以提高访存性能,然而在操作系统中实现热页监测和迁移会带来巨大的软件性能开销.硬件实现的层次架构由于增加了访存层次,对于访存局部性差的大数据应用反而增加了访存延迟.为此,本文提出可重构的异构内存架构,可以运行时在平行和层次架构间进行转换以动态适配不同应用的访存特性.设计了基于新型指令集架构RISC-V(Reduced Instruction Set Computing-V)的DRAM/NVM异构内存控制器,利用少量硬件计数器实现了访存踪迹统计和分析,并实现了DRAM和NVM物理页间的动态映射和高效迁移机制.实验表明,DRAM/NVM异构内存控制器可提高43%的应用性能.展开更多
随着机器学习、推荐系统和社交网络等数据驱动类技术的发展,数据正在以流的形式呈现.传统的缓存替换算法无法有效适应应用程序的流式访问行为,导致数据流程序带来了大量的缓存未命中与严重的缓存污染问题.本文依据数据流程序变化带来的...随着机器学习、推荐系统和社交网络等数据驱动类技术的发展,数据正在以流的形式呈现.传统的缓存替换算法无法有效适应应用程序的流式访问行为,导致数据流程序带来了大量的缓存未命中与严重的缓存污染问题.本文依据数据流程序变化带来的新的局部性优化挑战,提出了一种基于重用距离和非时态访存指令的优化方法RDNT.该方法首先筛选内存访问指令,然后计算重用距离,最后用非时态内存访问指令替换重用距离过大的常规内存访问指令.在SPEC CPU 2017测试集的实验结果表明,RDNT能够有效提高程序性能,与常规访存方式相比产生了8%的加速比,降低了程序的运行时间.展开更多
文摘融合传统动态随机访问存储器(Dynamic Random Access Memory,DRAM)与新型非易失性内存(NonVolatile Memory,NVM)可构建平行架构或层次架构的异构内存系统.平行架构的异构内存系统往往需要通过页迁移技术把热点数据从NVM迁移到DRAM以提高访存性能,然而在操作系统中实现热页监测和迁移会带来巨大的软件性能开销.硬件实现的层次架构由于增加了访存层次,对于访存局部性差的大数据应用反而增加了访存延迟.为此,本文提出可重构的异构内存架构,可以运行时在平行和层次架构间进行转换以动态适配不同应用的访存特性.设计了基于新型指令集架构RISC-V(Reduced Instruction Set Computing-V)的DRAM/NVM异构内存控制器,利用少量硬件计数器实现了访存踪迹统计和分析,并实现了DRAM和NVM物理页间的动态映射和高效迁移机制.实验表明,DRAM/NVM异构内存控制器可提高43%的应用性能.
文摘随着机器学习、推荐系统和社交网络等数据驱动类技术的发展,数据正在以流的形式呈现.传统的缓存替换算法无法有效适应应用程序的流式访问行为,导致数据流程序带来了大量的缓存未命中与严重的缓存污染问题.本文依据数据流程序变化带来的新的局部性优化挑战,提出了一种基于重用距离和非时态访存指令的优化方法RDNT.该方法首先筛选内存访问指令,然后计算重用距离,最后用非时态内存访问指令替换重用距离过大的常规内存访问指令.在SPEC CPU 2017测试集的实验结果表明,RDNT能够有效提高程序性能,与常规访存方式相比产生了8%的加速比,降低了程序的运行时间.