With the increasing use of low voltage portable devices and wireless systems, energy harvesting has become an attractive approach to overcome the problems associated with battery life and power source. Among the diffe...With the increasing use of low voltage portable devices and wireless systems, energy harvesting has become an attractive approach to overcome the problems associated with battery life and power source. Among the different types of microenergy scavengers, the TEG (thermoelectric generators) are one of the most commonly used one. Unfortunately, due to the very small amount of voltage delivered by the TEG, an efficient DC/DC (direct current/direct current) conversion and power management techniques are needed. In this paper, a CMOS (complementary metal oxide semiconductor) fully-integrated DC/DC convener for energy harvesting applications is presented. The startup-voltage of the converter is about 140 mV, the output voltage exceeds 1.5 V, with a 20% power efficiency at least. The architecture for boosting such extremely low voltages is based on an ultra-low-voltage oscillator cross connected to two phase charge pump. The overall circuit does not require any external components and can be fully integrated in a standard CMOS low voltage technology. A test-chip has been designed in UMC (united microelectronics corporation) 180 nm CMOS process.展开更多
文摘With the increasing use of low voltage portable devices and wireless systems, energy harvesting has become an attractive approach to overcome the problems associated with battery life and power source. Among the different types of microenergy scavengers, the TEG (thermoelectric generators) are one of the most commonly used one. Unfortunately, due to the very small amount of voltage delivered by the TEG, an efficient DC/DC (direct current/direct current) conversion and power management techniques are needed. In this paper, a CMOS (complementary metal oxide semiconductor) fully-integrated DC/DC convener for energy harvesting applications is presented. The startup-voltage of the converter is about 140 mV, the output voltage exceeds 1.5 V, with a 20% power efficiency at least. The architecture for boosting such extremely low voltages is based on an ultra-low-voltage oscillator cross connected to two phase charge pump. The overall circuit does not require any external components and can be fully integrated in a standard CMOS low voltage technology. A test-chip has been designed in UMC (united microelectronics corporation) 180 nm CMOS process.