This paper presents a mechanism for detecting flooding-attacks. The simplicity of the mechanism lies in its statelessness and low computation overhead, which makes the detection mechanism itself immune to flooding-att...This paper presents a mechanism for detecting flooding-attacks. The simplicity of the mechanism lies in its statelessness and low computation overhead, which makes the detection mechanism itself immune to flooding-attacks. The SYN-flooding, as an instance of flooding-attack, is used to illustrate the anomaly detection mechanism. The mechanism applies an exponentially weighted moving average (EWMA) method to detect the abrupt net flow and applies a symmetry analysis method to detect the anomaly activity of the network flow. Experiment shows that the mechanism has high detection accuracy and low detection latency.展开更多
Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artifici...Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artificial neural network may not reach a high degree of preciseness.Least Squares Support Vector Machines (LSSVM) is a kind of machine learning methods based on the statistics learning theory,it can be applied to solve small sample and non-linear problems very well.This paper applied LSSVM to predict the occur frequency of network security incidents.To improve the accuracy,it used an improved genetic algorithm to optimize the parameters of LSSVM.Verified by real data sets,the improved genetic algorithm (IGA) converges faster than the simple genetic algorithm (SGA),and has a higher efficiency in the optimization procedure.Specially,the optimized LSSVM model worked very well on the prediction of frequency of network security incidents.展开更多
基金TheNationalHighTechnologyResearchandDevelopmentProgramofChina(863Program) (No .2 0 0 2AA14 5 0 90 )
文摘This paper presents a mechanism for detecting flooding-attacks. The simplicity of the mechanism lies in its statelessness and low computation overhead, which makes the detection mechanism itself immune to flooding-attacks. The SYN-flooding, as an instance of flooding-attack, is used to illustrate the anomaly detection mechanism. The mechanism applies an exponentially weighted moving average (EWMA) method to detect the abrupt net flow and applies a symmetry analysis method to detect the anomaly activity of the network flow. Experiment shows that the mechanism has high detection accuracy and low detection latency.
基金supported in part by the National High Technology Research and Development Program of China ("863" Program) (No.2007AA010502)
文摘Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artificial neural network may not reach a high degree of preciseness.Least Squares Support Vector Machines (LSSVM) is a kind of machine learning methods based on the statistics learning theory,it can be applied to solve small sample and non-linear problems very well.This paper applied LSSVM to predict the occur frequency of network security incidents.To improve the accuracy,it used an improved genetic algorithm to optimize the parameters of LSSVM.Verified by real data sets,the improved genetic algorithm (IGA) converges faster than the simple genetic algorithm (SGA),and has a higher efficiency in the optimization procedure.Specially,the optimized LSSVM model worked very well on the prediction of frequency of network security incidents.