A novel device, lateral PIN photodiode gated by transparent electrode (LPIN PD-GTE) fabricated on fully-depleted SOI film was proposed. ITO film was adopted in the device as gate electrode to reduce the light absorp...A novel device, lateral PIN photodiode gated by transparent electrode (LPIN PD-GTE) fabricated on fully-depleted SOI film was proposed. ITO film was adopted in the device as gate electrode to reduce the light absorption. Thin Si film was fully depleted under gate voltage to achieve low dark current and high photo4o-dark current ratio. The model of gate voltage was obtained and the numerical simulations were presented by ATLAS. Current-voltage characteristics of LPIN PD-GTE obtained in dark (dark current) and under 570 nm illumination (photo current) were studied to achieve the greatest photo-to-dark current ratio for active channel length from 2 to 12 /am. The results show that the photo-to-dark current ratio is 2.0×10^7, with dark current of around 5×10^-4 pA under VGK=0.6 V, PrN=5 mW/cm2, for a total area of 10μm×10μm in fully depleted SOI technology. Thus, the LPIN PD-GTE can be suitable for high-grade photoelectric systems such as blue DVD.展开更多
Design reliable and safe LED (light emitting diode) lighting equipment for potentially explosive atmospheres should require knowledge about the possible failure modes of LED sources. Nowadays, LED technology potenti...Design reliable and safe LED (light emitting diode) lighting equipment for potentially explosive atmospheres should require knowledge about the possible failure modes of LED sources. Nowadays, LED technology potential is not adequately considered by IECEx (International Electrotechnical Commission system for certification to standards relating to equipment for use in explosive atmospheres) yet. Standards only consider LEDs adequate for Zone 1 when luminary is realized by the Ex-d protection strategy, or ifa big limitation in terms of power is guarantee, for Ex-i mode. In particular, Ex-d LED luminaries are obtained by using heavy, thick and expensive flameproof enclosures, entrusting safety only to the mechanical strength of the case. Luminous efficiency's also reduced since the glass used is very thick (10% reduction of approximately every 10 mm of thickness of the glass). The paper shows a study about different possible causes of LED failure and their implication with explosive atmospheres, investigating whether LED technology can be used safely with other safety strategy like Ex-e, which can guarantee better performance and less cost.展开更多
基金Project(61040061) supported by the National Natural Science Foundation of ChinaProject supported by Hunan Provincial Innovation Foundation for Postgraduate Students,China
文摘A novel device, lateral PIN photodiode gated by transparent electrode (LPIN PD-GTE) fabricated on fully-depleted SOI film was proposed. ITO film was adopted in the device as gate electrode to reduce the light absorption. Thin Si film was fully depleted under gate voltage to achieve low dark current and high photo4o-dark current ratio. The model of gate voltage was obtained and the numerical simulations were presented by ATLAS. Current-voltage characteristics of LPIN PD-GTE obtained in dark (dark current) and under 570 nm illumination (photo current) were studied to achieve the greatest photo-to-dark current ratio for active channel length from 2 to 12 /am. The results show that the photo-to-dark current ratio is 2.0×10^7, with dark current of around 5×10^-4 pA under VGK=0.6 V, PrN=5 mW/cm2, for a total area of 10μm×10μm in fully depleted SOI technology. Thus, the LPIN PD-GTE can be suitable for high-grade photoelectric systems such as blue DVD.
文摘Design reliable and safe LED (light emitting diode) lighting equipment for potentially explosive atmospheres should require knowledge about the possible failure modes of LED sources. Nowadays, LED technology potential is not adequately considered by IECEx (International Electrotechnical Commission system for certification to standards relating to equipment for use in explosive atmospheres) yet. Standards only consider LEDs adequate for Zone 1 when luminary is realized by the Ex-d protection strategy, or ifa big limitation in terms of power is guarantee, for Ex-i mode. In particular, Ex-d LED luminaries are obtained by using heavy, thick and expensive flameproof enclosures, entrusting safety only to the mechanical strength of the case. Luminous efficiency's also reduced since the glass used is very thick (10% reduction of approximately every 10 mm of thickness of the glass). The paper shows a study about different possible causes of LED failure and their implication with explosive atmospheres, investigating whether LED technology can be used safely with other safety strategy like Ex-e, which can guarantee better performance and less cost.