Chaotic synchronization of injected multiple-quantum-well lasers of optical fiber system and a theoretical model of optical fiber chaotic secure communication system are presented by coupling a chaotic multiple-quantu...Chaotic synchronization of injected multiple-quantum-well lasers of optical fiber system and a theoretical model of optical fiber chaotic secure communication system are presented by coupling a chaotic multiple-quantum-weU laser synchronization system and a fiber channel. A new chaotic encoding method of chaos phase shift keying On/Off is proposed for optical fiber secure communications. Chaotic synchronization is achieved numerically in long-haul fiber system at wavelength 1.55 μm. The effect of the nonlinear-phase of fiber is analyzed on chaotic signal and synchronization. A sinusoidal signal of 0.2 GHz frequency is simulated numerically with chaos masking in long-haul fiber analog communication at wavelength 1.55 μm while a digital signal of 0.5 Gbit/s bit rate is simulated numerically with c^1 haos masking and a rate of 0.05 Gbit/s are also simulated numerically with chaos shift keying and chaos phase shift keying On/Off in long-haul fiber digital communications at wavelength 1.55μm展开更多
Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditiona...Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditionally used by Indonesian people for construction material since a long time ago. Poaceae family commonly has better carbon sink ability than trees because of its Ca photosynthesis mechanisms, but bamboo sub-family (Bambusoideae) lacks the Ca photosynthetic pathway and anatomy. In the absence of this feature the maximum possible productivity of bamboos is unlikely to greatly exceed that of other bioenergy crops with C3 photosynthesis such as fast growing tree species. This research proposed a sinusoidal equation as a basic equation for plant's daily photosynthesis light response curve fitting. The sinusoidal equation was success for Betung bamboo's daily photosynthesis light response curve fitting (R2 〉 60%). It had similar result in estimating carbon sink (82.35 kg/clump/year) compared to those which calculated by annual increment (69.01-107.82 kg/clump/year). It is better to choose sinusoidal equation than quadratic or cubic Betung bamboo is a good choice to be planted in order to resist the global warming effect because it has superior carbon sink capability (82.35 kg/clump/year) than slow growing tree, and equal to fast growing tree species, besides many other advantages.展开更多
In this context, we believe that the sun sports research now focuses on the meaning and value of sports sunshine, sunshine sports meaning and identity, how to develop the Sunshine Sports and other issues. These studie...In this context, we believe that the sun sports research now focuses on the meaning and value of sports sunshine, sunshine sports meaning and identity, how to develop the Sunshine Sports and other issues. These studies contributed to the development of sports sunshine, but there is also a lack of rigorous logical theory discussed, and the lack of institutional mechanisms for research, such as lack of a single research methods. Strengthening sunshine sports promotion model, the development of long-term mechanism research, both theoretical study sports sunshine depth development needs, but also a necessary requirement for the development of Sunshine Sports. In order to effectively promote the College “sunshine sports” to carry out and improve the physical health of college students, the use of literature, interviews, statistics and other research methods, sports curriculum University under the “sunshine sports” Perspectives issues the study. Sunshine Sports is a strong push forward by the Chinese government, the students physical health of government intervention measures. Activities three years, in all types of schools at all levels to actively carry out an hour a day exercise, teachers and students to participate in sports initiative, growing consciousness, awareness and physical exercise generally improved, exercise one hour a day has become common practice. But in some places there is still not know the place, lack of investment, lack of teachers and other issues, in order to make sustainable development the sun sports, will take in institution building, reform the examination and evaluation mechanisms, strengthening supervision and so do efforts.展开更多
We propose a fully distributed fusion system combining phase-sensitive optical time-domain reflectometry(Φ-OTDR) and OTDR for synchronous vibration and loss measurement by setting an ingenious frequency sweep rate(FS...We propose a fully distributed fusion system combining phase-sensitive optical time-domain reflectometry(Φ-OTDR) and OTDR for synchronous vibration and loss measurement by setting an ingenious frequency sweep rate(FSR) of the optical source. The relationships between FSR, probe pulse width and repeat period are given to balance the amplitude fluctuation of OTDR traces, the dead zone probability and the measurable frequency range of vibration events. In the experiment, we achieve synchronous vibration and loss measurement with FSR of 40 MHz/s, the proble pulse width of 100 ns and repeat rate of 0.4 ms. The fluctuation of OTDR trace is less than 0.45 dB when the signalto-noise ratio(SNR) is over 12 dB for a captured vibration event located at 9.1 km. The proposed method can be used for not only detection but also early warning of damage events in optical communication networks.展开更多
The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The ...The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.展开更多
文摘Chaotic synchronization of injected multiple-quantum-well lasers of optical fiber system and a theoretical model of optical fiber chaotic secure communication system are presented by coupling a chaotic multiple-quantum-weU laser synchronization system and a fiber channel. A new chaotic encoding method of chaos phase shift keying On/Off is proposed for optical fiber secure communications. Chaotic synchronization is achieved numerically in long-haul fiber system at wavelength 1.55 μm. The effect of the nonlinear-phase of fiber is analyzed on chaotic signal and synchronization. A sinusoidal signal of 0.2 GHz frequency is simulated numerically with chaos masking in long-haul fiber analog communication at wavelength 1.55 μm while a digital signal of 0.5 Gbit/s bit rate is simulated numerically with c^1 haos masking and a rate of 0.05 Gbit/s are also simulated numerically with chaos shift keying and chaos phase shift keying On/Off in long-haul fiber digital communications at wavelength 1.55μm
文摘Planting plant such as Betung bamboo (Dendrocalamus asper (Schult f.) Backer ex Heyne) is one of the best ways for reducing global warming effect. Betung bamboo is giant grass (Poaceae) which has been traditionally used by Indonesian people for construction material since a long time ago. Poaceae family commonly has better carbon sink ability than trees because of its Ca photosynthesis mechanisms, but bamboo sub-family (Bambusoideae) lacks the Ca photosynthetic pathway and anatomy. In the absence of this feature the maximum possible productivity of bamboos is unlikely to greatly exceed that of other bioenergy crops with C3 photosynthesis such as fast growing tree species. This research proposed a sinusoidal equation as a basic equation for plant's daily photosynthesis light response curve fitting. The sinusoidal equation was success for Betung bamboo's daily photosynthesis light response curve fitting (R2 〉 60%). It had similar result in estimating carbon sink (82.35 kg/clump/year) compared to those which calculated by annual increment (69.01-107.82 kg/clump/year). It is better to choose sinusoidal equation than quadratic or cubic Betung bamboo is a good choice to be planted in order to resist the global warming effect because it has superior carbon sink capability (82.35 kg/clump/year) than slow growing tree, and equal to fast growing tree species, besides many other advantages.
文摘In this context, we believe that the sun sports research now focuses on the meaning and value of sports sunshine, sunshine sports meaning and identity, how to develop the Sunshine Sports and other issues. These studies contributed to the development of sports sunshine, but there is also a lack of rigorous logical theory discussed, and the lack of institutional mechanisms for research, such as lack of a single research methods. Strengthening sunshine sports promotion model, the development of long-term mechanism research, both theoretical study sports sunshine depth development needs, but also a necessary requirement for the development of Sunshine Sports. In order to effectively promote the College “sunshine sports” to carry out and improve the physical health of college students, the use of literature, interviews, statistics and other research methods, sports curriculum University under the “sunshine sports” Perspectives issues the study. Sunshine Sports is a strong push forward by the Chinese government, the students physical health of government intervention measures. Activities three years, in all types of schools at all levels to actively carry out an hour a day exercise, teachers and students to participate in sports initiative, growing consciousness, awareness and physical exercise generally improved, exercise one hour a day has become common practice. But in some places there is still not know the place, lack of investment, lack of teachers and other issues, in order to make sustainable development the sun sports, will take in institution building, reform the examination and evaluation mechanisms, strengthening supervision and so do efforts.
基金supported by the National Natural Science Foundation of China(Nos.61405090,61307096 and 61540017)
文摘We propose a fully distributed fusion system combining phase-sensitive optical time-domain reflectometry(Φ-OTDR) and OTDR for synchronous vibration and loss measurement by setting an ingenious frequency sweep rate(FSR) of the optical source. The relationships between FSR, probe pulse width and repeat period are given to balance the amplitude fluctuation of OTDR traces, the dead zone probability and the measurable frequency range of vibration events. In the experiment, we achieve synchronous vibration and loss measurement with FSR of 40 MHz/s, the proble pulse width of 100 ns and repeat rate of 0.4 ms. The fluctuation of OTDR trace is less than 0.45 dB when the signalto-noise ratio(SNR) is over 12 dB for a captured vibration event located at 9.1 km. The proposed method can be used for not only detection but also early warning of damage events in optical communication networks.
文摘The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.