建立了全光纤电流互感器(fiber-optical current transformer,FOCT)温度特性的数学模型。该模型充分考虑传感光纤的弯曲特性,结合光纤线性双折射的分布参数模型从本质上解释了温度对线性双折射的影响机理:由于传感环的弯曲性,温度变...建立了全光纤电流互感器(fiber-optical current transformer,FOCT)温度特性的数学模型。该模型充分考虑传感光纤的弯曲特性,结合光纤线性双折射的分布参数模型从本质上解释了温度对线性双折射的影响机理:由于传感环的弯曲性,温度变化会导致光纤横截面上的受力不对称,进而引起线性双折射;单位长度光纤的线性双折射相位差与温度变化量成正比,与光纤弯曲半径成反比。并结合光纤Verdet常数的温度特性综合量化了温度对FOCT的影响。采用COMSOL有限元分析方法实现光场、磁场、温度场、应力场的耦合并分析求解。仿真结果表明:双折射效应会使光波旋转角变小;光纤横截面上的应力差与温度变化量成正比,与光纤弯曲半径成反比;温度波动将引起线性双折射,进而使光波旋转角减小;结合Verdet常数得到了温度波动时FOCT的综合误差,与理论分析结果吻合。最后设计并搭建FOCT实验平台,进行线性度测试和温度循环测试。测试结果表明:实验误差与理论误差变化趋势基本一致;温度波动越大,FOCT误差漂移越严重,必须采取补偿措施,故提出一系列改善FOCT温度稳定性的方法。仿真与实验结果验证了理论分析的正确性。展开更多
该文针对全光纤电流互感器测量精度受各种内外部因素影响的问题,建立全光纤电流互感器微元传感单元的分布参数模型,从本质上解释传感单元中线性双折射的产生机理,即极化率张量对角元不相等的作用结果;并结合光电转化的数学模型得到全光...该文针对全光纤电流互感器测量精度受各种内外部因素影响的问题,建立全光纤电流互感器微元传感单元的分布参数模型,从本质上解释传感单元中线性双折射的产生机理,即极化率张量对角元不相等的作用结果;并结合光电转化的数学模型得到全光纤电流互感器的开环机理,提出提高全光纤电流互感器(fiber-optical current transformer,FOCT)测量精度的方法:采用新型传感材料或新型传感头结构及引入反馈信号构建闭环结构。采用COMSOL有限元数值分析方法,实现光场和磁场的耦合。分析双折射、被测电流、纤芯折射率、光纤的弯曲半径对测量结果的影响。研究表明,线性双折射是由传感材料的折射率变化引起,会降低测量灵敏度;同一双折射,在不同的外界条件(如被测电流)下,对测量结果的影响不同;对于不同的纤芯折射率,折射率越小,传输相同距离后,旋转角越大;微元传感单元中由弯曲半径引起的线性双折射较小,通常可采用分段补偿法,得到理想的Faraday旋转角;最后通过仿真分析与现有经典公式的比较,验证分布参数模型的有效性,为后续FOCT传感单元中的光场、磁场、温度场、应力场等复杂的多物理场耦合提供模型基础。展开更多
利用电力系统实时数字仿真系统(real-time digital simulator,RTDS),研究并建立了全光纤电流互感器(fiber optical current transformer,FOCT)的实时动态仿真模型。通过对FOCT检测系统中偏差与反馈2部分的合理简化,建立了等效的数字闭...利用电力系统实时数字仿真系统(real-time digital simulator,RTDS),研究并建立了全光纤电流互感器(fiber optical current transformer,FOCT)的实时动态仿真模型。通过对FOCT检测系统中偏差与反馈2部分的合理简化,建立了等效的数字闭环控制系统模型;根据不同温度下,光纤Verdet常数和l/4波片相位延迟的变化规律,以及探测器接收光强关于l/4波片参数的数学模型,将可变的温度参数引入到了模型中。通过仿真试验,找到了能够补偿温度误差的l/4波片初始相位延迟角的范围,证明了所建FOCT实时动态仿真模型是合理的,能够有效模拟FOCT的稳态温度特性,且暂态特性良好,可用于对FOCT性能的深入研究及智能变电站相关设备的测试。展开更多
文摘建立了全光纤电流互感器(fiber-optical current transformer,FOCT)温度特性的数学模型。该模型充分考虑传感光纤的弯曲特性,结合光纤线性双折射的分布参数模型从本质上解释了温度对线性双折射的影响机理:由于传感环的弯曲性,温度变化会导致光纤横截面上的受力不对称,进而引起线性双折射;单位长度光纤的线性双折射相位差与温度变化量成正比,与光纤弯曲半径成反比。并结合光纤Verdet常数的温度特性综合量化了温度对FOCT的影响。采用COMSOL有限元分析方法实现光场、磁场、温度场、应力场的耦合并分析求解。仿真结果表明:双折射效应会使光波旋转角变小;光纤横截面上的应力差与温度变化量成正比,与光纤弯曲半径成反比;温度波动将引起线性双折射,进而使光波旋转角减小;结合Verdet常数得到了温度波动时FOCT的综合误差,与理论分析结果吻合。最后设计并搭建FOCT实验平台,进行线性度测试和温度循环测试。测试结果表明:实验误差与理论误差变化趋势基本一致;温度波动越大,FOCT误差漂移越严重,必须采取补偿措施,故提出一系列改善FOCT温度稳定性的方法。仿真与实验结果验证了理论分析的正确性。
文摘该文针对全光纤电流互感器测量精度受各种内外部因素影响的问题,建立全光纤电流互感器微元传感单元的分布参数模型,从本质上解释传感单元中线性双折射的产生机理,即极化率张量对角元不相等的作用结果;并结合光电转化的数学模型得到全光纤电流互感器的开环机理,提出提高全光纤电流互感器(fiber-optical current transformer,FOCT)测量精度的方法:采用新型传感材料或新型传感头结构及引入反馈信号构建闭环结构。采用COMSOL有限元数值分析方法,实现光场和磁场的耦合。分析双折射、被测电流、纤芯折射率、光纤的弯曲半径对测量结果的影响。研究表明,线性双折射是由传感材料的折射率变化引起,会降低测量灵敏度;同一双折射,在不同的外界条件(如被测电流)下,对测量结果的影响不同;对于不同的纤芯折射率,折射率越小,传输相同距离后,旋转角越大;微元传感单元中由弯曲半径引起的线性双折射较小,通常可采用分段补偿法,得到理想的Faraday旋转角;最后通过仿真分析与现有经典公式的比较,验证分布参数模型的有效性,为后续FOCT传感单元中的光场、磁场、温度场、应力场等复杂的多物理场耦合提供模型基础。
文摘利用电力系统实时数字仿真系统(real-time digital simulator,RTDS),研究并建立了全光纤电流互感器(fiber optical current transformer,FOCT)的实时动态仿真模型。通过对FOCT检测系统中偏差与反馈2部分的合理简化,建立了等效的数字闭环控制系统模型;根据不同温度下,光纤Verdet常数和l/4波片相位延迟的变化规律,以及探测器接收光强关于l/4波片参数的数学模型,将可变的温度参数引入到了模型中。通过仿真试验,找到了能够补偿温度误差的l/4波片初始相位延迟角的范围,证明了所建FOCT实时动态仿真模型是合理的,能够有效模拟FOCT的稳态温度特性,且暂态特性良好,可用于对FOCT性能的深入研究及智能变电站相关设备的测试。