The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift f...The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China).展开更多
The viscous hydrodynamic force and moment on ships moving obliquely in shallow water are important for ship navigation safety.In the paper,the viscous flow field around a KVLCC2 model moving obliquely in shallow water...The viscous hydrodynamic force and moment on ships moving obliquely in shallow water are important for ship navigation safety.In the paper,the viscous flow field around a KVLCC2 model moving obliquely in shallow water is simulated and the hydrodynamic drag,lateral force and yaw moment acting on the hull are obtained by a general purpose computational fluid dynamics(CFD) package FLUENT with shear-stress transport(SST) k—ωturbulence model.The numerical computation is performed at different drift angels and water depths.The numerical results are compared with experimental results,and a good agreement is demonstrated.展开更多
The effects of the nuclear current in the antimagnetic rotation band of 105Cd have been investigated in a fully self-consistent and microscopic way by using the tilted axis cranking relativistic mean-field model.It wa...The effects of the nuclear current in the antimagnetic rotation band of 105Cd have been investigated in a fully self-consistent and microscopic way by using the tilted axis cranking relativistic mean-field model.It was found that the inclusion of nuclear current leads to a higher angular momentum and thus a larger kinetic moment of inertia at a given rotational frequency.As a consequence,the B(E2) values with current are always smaller than those without current.展开更多
基金Project(U1334203) supported by the National Natural Science Foundation of China
文摘The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China).
基金the National Natural Science Foundationof China(No.10572094)the Natural Science Foundation of Shanghai(No.06ZR14050)
文摘The viscous hydrodynamic force and moment on ships moving obliquely in shallow water are important for ship navigation safety.In the paper,the viscous flow field around a KVLCC2 model moving obliquely in shallow water is simulated and the hydrodynamic drag,lateral force and yaw moment acting on the hull are obtained by a general purpose computational fluid dynamics(CFD) package FLUENT with shear-stress transport(SST) k—ωturbulence model.The numerical computation is performed at different drift angels and water depths.The numerical results are compared with experimental results,and a good agreement is demonstrated.
基金supported by the National Basic Research Program of China(Grant No.2007CB815000)the National Natural Science Foundation of China(Grant Nos.10975008, 11105005 and 11175002)the Research Fund for the Doctoral Program of Higher Education(Grant No.20110001110087)
文摘The effects of the nuclear current in the antimagnetic rotation band of 105Cd have been investigated in a fully self-consistent and microscopic way by using the tilted axis cranking relativistic mean-field model.It was found that the inclusion of nuclear current leads to a higher angular momentum and thus a larger kinetic moment of inertia at a given rotational frequency.As a consequence,the B(E2) values with current are always smaller than those without current.