traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to...traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to this method, which is irrational to some extent in the seismic design of slope. Second, only peak ground acceleration (PGA) is considered, and the effects of shaking frequency and duration on slope stability are neglected. And then, based on the theory of elastic wave and the summarized geological model, this paper put forwards an improved method of pseudo-method by using the theory of elastic wave and Hilbert-Huang transform. The improved pseudostatic method gives reasonable considerations to the time-frequency effects of seismic wave and its rationality has been verified by the shaking table test. This method can evaluate the safety of a slope, the happening time and the scale of landslides. At the same time, this method also can improve the high accuracy of the evaluation of the safety of the slope.展开更多
A new method was presented to determine the safety factor of wall stability against overturning based on pseudo-dynamic approach. In this time-dependent method, the actual dynamic effect with variation of time and pro...A new method was presented to determine the safety factor of wall stability against overturning based on pseudo-dynamic approach. In this time-dependent method, the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the backfills was considered. Planar failure surface was considered behind the retaining wall. The results were compared with those obtained from Mononobe-Okabe theory. It is found that there is a higher value of safety factor by the present dynamic analysis. The effects of wall inclination, wall friction angle, soil friction angle and horizontal and vertical seismic coefficients on the overturning stability of retaining wall were investigated. The parametric study shows that both horizontal and vertical seismic accelerations have decreasing effect on the overturning stability of retaining wall.展开更多
Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little att...Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little attention has been given to the relationship between the slope stability numbers and the critical seismic acceleration coefficient.This study aims to investigate the relationship between the static FoS and the critical seismic acceleration coefficient of soil slopes in the framework of the upper-bound limit analysis.Based on the 3D rotational failure mechanism,the critical seismic acceleration coefficient using the pseudo-static method and the static FoS using the strength reduction technique are first determined.Then,the relationship between the static FoS and the critical seismic acceleration coefficient is presented under considering the slope angleβ,the frictional angleφ,and the dimensionless coefficients B/H and c/γH.Finally,a fitting formula between the static FoS and the critical seismic acceleration coefficient is proposed and validated by analytical and numerical results.展开更多
Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt ...Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt the tremor generated fTom Sumatran subduction and fault zones especially in the west cost of Peninsular Malaysia such as Johor Bahru, Kuala Lumpur and Penang. Existing design response spectra was developed based on attenuation relationship for each subduction and fault zone. In this study, the design response spectra were developed based on various attenuation relationships for selected location in Kuala Lumpur area, namely, Mutiara Damansara, Bandar Petaling Jaya and Bandar Puteri Puchong. The development of design response spectra based on various attenuation relationships is more reliable in selecting the appropriate attenuation relationship for the study area. Seven attenuations have been chosen and results show that Megawati et al. are the most appropriate attenuation relation for fault zone, where the predicted PGA (peak ground acceleration) is 0.0187 g which is the proposed PGA value for this study area. This study also found that most of soil in the study area can be categorized into SD (stiff soil) according to site classification in the NEHRP 2000 Provision/UBC 97. Bandar petaling Jaya was found to be highest AF (amplification factor) of 3.74 for stiff soil and Mutiara Damansara with AF of 2.67 for very dense soil or soft rock. The proposed design response spectra for each location were developed based on UBC 1997 (Uniform Building Code 1997). The peak RSA (response spectrum acceleration) of 0.30 g for soil type SD for Bandar Petaling Jaya is the maximum level of acceleration on the soil surface with a period range of 0.10 to 0.52 seconds. All these values can be used for the seismic safety evaluation of existing structures and as a guideline in designing new structures to resist future earthquake, within the study area.展开更多
In this paper, an FEM (Finite Element Method) model is established for the main span of the bridge, with the main box arch and suspender members modeled by beam elements, truss members by truss elements, and the ort...In this paper, an FEM (Finite Element Method) model is established for the main span of the bridge, with the main box arch and suspender members modeled by beam elements, truss members by truss elements, and the orthotropic steel deck by plate elements. The natural frequencies and mode shapes are acquired by the eigen-parameter analysis. By input of a typical earthquake excitation to the bridge system, the dynamic responses of the bridge, including the displacement and accelerations of the main joints of the structure, and the seismic forces and stresses of the key members, are calculated by the structural analysis program, based on which the main laws of the seismic responses of the bridge are summarized, and the safety of the structure is evaluated.展开更多
This paper proposes a self-position estimate algorithm for the multiple mobile robots; each robot uses two omnidirectional cameras and an accelerometer. In recent years, the Great East Japan Earthquake and large-scale...This paper proposes a self-position estimate algorithm for the multiple mobile robots; each robot uses two omnidirectional cameras and an accelerometer. In recent years, the Great East Japan Earthquake and large-scale disasters have occurred frequently in Japan. From this, development of the searching robot which supports the rescue team to perform a relief activity at a large-scale disaster is indispensable. Then, this research has developed the searching robot group system with two or more mobile robots. In this research, the searching robot equips with two omnidirectional cameras and an accelerometer. In order to perform distance measurement using two omnidirectional cameras, each parameter of an omnidirectional camera and the position and posture between two omnidirectional cameras have to be calibrated in advance. If there are few mobile robots, the calibration time of each omnidirectional camera does not pose a problem. However, if the calibration is separately performed when using two or more robots in a disaster site, etc., it will take huge calibration time. Then, this paper proposed the algorithm which estimates a mobile robot's position and the parameter of the position and posture between two omnidirectional cameras simultaneously. The algorithm proposed in this paper extended Nonlinear Transformation (NLT) Method. This paper conducted the simulation experiment to check the validity of the proposed algorithm. In some simulation experiments, one mobile robot moves and observes the circumference of another mobile robot which has stopped at a certain place. This paper verified whether the mobile robot can estimate position using the measurement value when the number of observation times becomes 10 times in n/18 of observation intervals. The result of the simulation shows the effectiveness of the algorithm.展开更多
基金supported in part by National Science Foundation of China (Contract NO. 41030742)Guangxi Science Foundation and the Program for Science & Technology of Henan Province in China (Grant No. 142300410200)
文摘traditional In this paper, two drawbacks pseudo-static method (vertical of the slice method) in the slope stability evaluation have been studied. First, the sliding mass is divided into vertical slices according to this method, which is irrational to some extent in the seismic design of slope. Second, only peak ground acceleration (PGA) is considered, and the effects of shaking frequency and duration on slope stability are neglected. And then, based on the theory of elastic wave and the summarized geological model, this paper put forwards an improved method of pseudo-method by using the theory of elastic wave and Hilbert-Huang transform. The improved pseudostatic method gives reasonable considerations to the time-frequency effects of seismic wave and its rationality has been verified by the shaking table test. This method can evaluate the safety of a slope, the happening time and the scale of landslides. At the same time, this method also can improve the high accuracy of the evaluation of the safety of the slope.
基金Project(50879077) supported by the National Natural Science Foundation of China
文摘A new method was presented to determine the safety factor of wall stability against overturning based on pseudo-dynamic approach. In this time-dependent method, the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the backfills was considered. Planar failure surface was considered behind the retaining wall. The results were compared with those obtained from Mononobe-Okabe theory. It is found that there is a higher value of safety factor by the present dynamic analysis. The effects of wall inclination, wall friction angle, soil friction angle and horizontal and vertical seismic coefficients on the overturning stability of retaining wall were investigated. The parametric study shows that both horizontal and vertical seismic accelerations have decreasing effect on the overturning stability of retaining wall.
基金Project(2017YFB1201204)supported by the National Key R&D Program of ChinaProject(1053320190957)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Many analytical methods have been adopted to estimate the slope stability by providing various stability numbers,e.g.static safety of factor(static FoS)or the critical seismic acceleration coefficient,while little attention has been given to the relationship between the slope stability numbers and the critical seismic acceleration coefficient.This study aims to investigate the relationship between the static FoS and the critical seismic acceleration coefficient of soil slopes in the framework of the upper-bound limit analysis.Based on the 3D rotational failure mechanism,the critical seismic acceleration coefficient using the pseudo-static method and the static FoS using the strength reduction technique are first determined.Then,the relationship between the static FoS and the critical seismic acceleration coefficient is presented under considering the slope angleβ,the frictional angleφ,and the dimensionless coefficients B/H and c/γH.Finally,a fitting formula between the static FoS and the critical seismic acceleration coefficient is proposed and validated by analytical and numerical results.
文摘Peninsular Malaysia is located and lies in a low seismic region. Although Malaysia is not located in the active fault seismic area, it is closed to the Sumatran active seismic zones. Tall building are fIequently felt the tremor generated fTom Sumatran subduction and fault zones especially in the west cost of Peninsular Malaysia such as Johor Bahru, Kuala Lumpur and Penang. Existing design response spectra was developed based on attenuation relationship for each subduction and fault zone. In this study, the design response spectra were developed based on various attenuation relationships for selected location in Kuala Lumpur area, namely, Mutiara Damansara, Bandar Petaling Jaya and Bandar Puteri Puchong. The development of design response spectra based on various attenuation relationships is more reliable in selecting the appropriate attenuation relationship for the study area. Seven attenuations have been chosen and results show that Megawati et al. are the most appropriate attenuation relation for fault zone, where the predicted PGA (peak ground acceleration) is 0.0187 g which is the proposed PGA value for this study area. This study also found that most of soil in the study area can be categorized into SD (stiff soil) according to site classification in the NEHRP 2000 Provision/UBC 97. Bandar petaling Jaya was found to be highest AF (amplification factor) of 3.74 for stiff soil and Mutiara Damansara with AF of 2.67 for very dense soil or soft rock. The proposed design response spectra for each location were developed based on UBC 1997 (Uniform Building Code 1997). The peak RSA (response spectrum acceleration) of 0.30 g for soil type SD for Bandar Petaling Jaya is the maximum level of acceleration on the soil surface with a period range of 0.10 to 0.52 seconds. All these values can be used for the seismic safety evaluation of existing structures and as a guideline in designing new structures to resist future earthquake, within the study area.
基金Acknowledgments: This study is sponsored by the Natural Science Foundation of China (No. 90715008) and the Flander (Belgium)-China Bilateral Project (No. BIL07/07).
文摘In this paper, an FEM (Finite Element Method) model is established for the main span of the bridge, with the main box arch and suspender members modeled by beam elements, truss members by truss elements, and the orthotropic steel deck by plate elements. The natural frequencies and mode shapes are acquired by the eigen-parameter analysis. By input of a typical earthquake excitation to the bridge system, the dynamic responses of the bridge, including the displacement and accelerations of the main joints of the structure, and the seismic forces and stresses of the key members, are calculated by the structural analysis program, based on which the main laws of the seismic responses of the bridge are summarized, and the safety of the structure is evaluated.
文摘This paper proposes a self-position estimate algorithm for the multiple mobile robots; each robot uses two omnidirectional cameras and an accelerometer. In recent years, the Great East Japan Earthquake and large-scale disasters have occurred frequently in Japan. From this, development of the searching robot which supports the rescue team to perform a relief activity at a large-scale disaster is indispensable. Then, this research has developed the searching robot group system with two or more mobile robots. In this research, the searching robot equips with two omnidirectional cameras and an accelerometer. In order to perform distance measurement using two omnidirectional cameras, each parameter of an omnidirectional camera and the position and posture between two omnidirectional cameras have to be calibrated in advance. If there are few mobile robots, the calibration time of each omnidirectional camera does not pose a problem. However, if the calibration is separately performed when using two or more robots in a disaster site, etc., it will take huge calibration time. Then, this paper proposed the algorithm which estimates a mobile robot's position and the parameter of the position and posture between two omnidirectional cameras simultaneously. The algorithm proposed in this paper extended Nonlinear Transformation (NLT) Method. This paper conducted the simulation experiment to check the validity of the proposed algorithm. In some simulation experiments, one mobile robot moves and observes the circumference of another mobile robot which has stopped at a certain place. This paper verified whether the mobile robot can estimate position using the measurement value when the number of observation times becomes 10 times in n/18 of observation intervals. The result of the simulation shows the effectiveness of the algorithm.