针对传统正则化超分辨率(SR)重建模型中,正则化参数选择过大会使重建结果模糊,导致边缘和纹理等细节丢失,选择过小模型去噪能力又不足的问题,提出一种基于结构张量的双正则化参数的视频超分辨率重建算法。首先,利用局部结构张量对图...针对传统正则化超分辨率(SR)重建模型中,正则化参数选择过大会使重建结果模糊,导致边缘和纹理等细节丢失,选择过小模型去噪能力又不足的问题,提出一种基于结构张量的双正则化参数的视频超分辨率重建算法。首先,利用局部结构张量对图像进行平滑区域和边缘的检测;然后,利用差异曲率对全变分(TV)进行先验信息加权;最后,对平滑区域和边缘采用不同的正则化参数进行超分辨率重建。实验数据显示提出的算法将峰值信噪比(PSNR)提高了0.033~0.11 d B,具有较好的重建效果。实验结果表明:该算法能够有效地提升低分辨率(LR)视频帧重建效果,可应用于低分辨率视频增强、车牌识别和视频监控中感兴趣目标增强等方面。展开更多
To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consist...To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consisting of main ventilation fan, safety-partition linked passageways, and air-required locations. We then applied chaos theory to identify the air quantity and gas concentration of underground partition boundaries, and adopted a fixed data quantity, multi-step progressive, weighted first-order local-domain method to setup a chaos prediction model and a CVS safety forecasting and forewarning system formed by the normal change level, orange forewarning level, and red alarm level. We next conduct the on-field application of the system in a coalmine in Jining, Shandong, China. The results showed that (1) in the statistical scale of 5 min, the changes in both air quantity and gas concentration along CVS partition airflow boundaries were characteristic of chaos and could be used for short-term chaos prediction, and the latter was more chaotic than the former;(2) the setup chaos prediction model had a higher prediction precision and the established safety prediction system could not only predict the variation in CVS stability but also reflect the rationality of underground mining intensity. Thus, this CVS safety forecasting and forewarning system is of better application value.展开更多
文摘针对传统正则化超分辨率(SR)重建模型中,正则化参数选择过大会使重建结果模糊,导致边缘和纹理等细节丢失,选择过小模型去噪能力又不足的问题,提出一种基于结构张量的双正则化参数的视频超分辨率重建算法。首先,利用局部结构张量对图像进行平滑区域和边缘的检测;然后,利用差异曲率对全变分(TV)进行先验信息加权;最后,对平滑区域和边缘采用不同的正则化参数进行超分辨率重建。实验数据显示提出的算法将峰值信噪比(PSNR)提高了0.033~0.11 d B,具有较好的重建效果。实验结果表明:该算法能够有效地提升低分辨率(LR)视频帧重建效果,可应用于低分辨率视频增强、车牌识别和视频监控中感兴趣目标增强等方面。
基金supported by the National Natural Science Foundation of China(Nos.51304128 and 51674158)the Natural Science Foundation of Shandong Province(No.ZR2013EEQ015)
文摘To realize real-time monitoring and short-term forecasting and forewarning of coalmine ventilation systems(CVS), in this paper, we first established a joint surface and underground CVS safety management system consisting of main ventilation fan, safety-partition linked passageways, and air-required locations. We then applied chaos theory to identify the air quantity and gas concentration of underground partition boundaries, and adopted a fixed data quantity, multi-step progressive, weighted first-order local-domain method to setup a chaos prediction model and a CVS safety forecasting and forewarning system formed by the normal change level, orange forewarning level, and red alarm level. We next conduct the on-field application of the system in a coalmine in Jining, Shandong, China. The results showed that (1) in the statistical scale of 5 min, the changes in both air quantity and gas concentration along CVS partition airflow boundaries were characteristic of chaos and could be used for short-term chaos prediction, and the latter was more chaotic than the former;(2) the setup chaos prediction model had a higher prediction precision and the established safety prediction system could not only predict the variation in CVS stability but also reflect the rationality of underground mining intensity. Thus, this CVS safety forecasting and forewarning system is of better application value.