A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural n...A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy.展开更多
Based on the height of back-filled materials, thickness of ore body, height of boundary pillar and dipping angle of ore body and water pressure, the safety factors of all the pillars are calculated with the limit equi...Based on the height of back-filled materials, thickness of ore body, height of boundary pillar and dipping angle of ore body and water pressure, the safety factors of all the pillars are calculated with the limit equilibrium method. The calculation results present that the safety factors of pillars in Sections 19, 20, 24, 28 are less than 1.3, and those of unstable sections are identified preliminarily. Further, a numerical investigation in Sections 18, 20, 22, 24, 25 and 28 implemented with numerical code RFPA20 is employed to further validate the pillar performance and the stability of stopes. The numerical results show the pillars in Sections 18, 22 and 24 are stable and the designed pillar size is suitable. The width of the ore body near Section 28 averages 20 m, failure occurs in the left stope, but the boundary pillars near Section 28 maintain good performance. The pillars in Sections 20 and 25 are unstable which are mainly affected by the Faults F8 and F18. The existence of faults alters the stress distribution, failure mode and water inrush pathway. This work provides a meaningful standard for boundary pillar and stope design in a mine as it transitions from an open pit to underground.展开更多
A deterministic approach is frequently used in engineering design. In this quantitative design methodology, a safety factor, which is typically a strength-to-stress ratio, is derived as an index for the stability asse...A deterministic approach is frequently used in engineering design. In this quantitative design methodology, a safety factor, which is typically a strength-to-stress ratio, is derived as an index for the stability assessment of the engineering design. In underground coal mining applications such as pillar design,however, the inputs of pillar design are variables. This is widely overlooked in the deterministic approach. A probabilistic approach assessing the probability of failure or reliability of a system might be an alternative to the conventional quantitative methodology. This approach can incorporate the degree of uncertainty and deviations of variables and provide more versatile and reliable results. In this research, the reliability of case histories from stable and failed pillars of South Africa presented by Merwe and Mathey is examed. The updated Salamon and Munro strength formula(S-M formula) and Merwe and Mathey strength formula(M-M formula) are evaluated through a probabilistic approach. It is concluded that stable pillar cases have a reliability value greater than 0.83 while the reliability value of failed pillar cases are slightly larger than 0.50. There seems to be a positive relation between safety factor and reliability. The reliability of a pillar increases with pillar width but decreases with depth of cover, pillar height and entry width. The reliability analysis also confirms that M-M strength formula has a better distinction between the stable and failed pillar cases.展开更多
文摘A comprehensive risk based security assessment which includes low voltage, line overload and voltage collapse was presented using a relatively new neural network technique called as the generalized regression neural network (GRNN) with incorporation of feature extraction method using principle component analysis. In the risk based security assessment formulation, the failure rate associated to weather condition of each line was used to compute the probability of line outage for a given weather condition and the extent of security violation was represented by a severity function. For low voltage and line overload, continuous severity function was considered due to its ability to zoom in into the effect of near violating contingency. New severity function for voltage collapse using the voltage collapse prediction index was proposed. To reduce the computational burden, a new contingency screening method was proposed using the risk factor so as to select the critical line outages. The risk based security assessment method using GRNN was implemented on a large scale 87-bus power system and the results show that the risk prediction results obtained using GRNN with the incorporation of principal component analysis give better performance in terms of accuracy.
基金Projects(1004025,51174044,50934006)supported by the National Natural Science FoundationProject(2011AA060400)supported by the National High Technique Research and Development Program of ChinaProject(Sklgduek1113)supported by Funds of the State Key Laboratory for Geomechanics&Deep Underground Engineering,Chinese University of Mining and Technology,China
文摘Based on the height of back-filled materials, thickness of ore body, height of boundary pillar and dipping angle of ore body and water pressure, the safety factors of all the pillars are calculated with the limit equilibrium method. The calculation results present that the safety factors of pillars in Sections 19, 20, 24, 28 are less than 1.3, and those of unstable sections are identified preliminarily. Further, a numerical investigation in Sections 18, 20, 22, 24, 25 and 28 implemented with numerical code RFPA20 is employed to further validate the pillar performance and the stability of stopes. The numerical results show the pillars in Sections 18, 22 and 24 are stable and the designed pillar size is suitable. The width of the ore body near Section 28 averages 20 m, failure occurs in the left stope, but the boundary pillars near Section 28 maintain good performance. The pillars in Sections 20 and 25 are unstable which are mainly affected by the Faults F8 and F18. The existence of faults alters the stress distribution, failure mode and water inrush pathway. This work provides a meaningful standard for boundary pillar and stope design in a mine as it transitions from an open pit to underground.
基金supported by the National Natural Science Foundation of General Programs of China (Nos. 51574244, 51674264 and 51674243)
文摘A deterministic approach is frequently used in engineering design. In this quantitative design methodology, a safety factor, which is typically a strength-to-stress ratio, is derived as an index for the stability assessment of the engineering design. In underground coal mining applications such as pillar design,however, the inputs of pillar design are variables. This is widely overlooked in the deterministic approach. A probabilistic approach assessing the probability of failure or reliability of a system might be an alternative to the conventional quantitative methodology. This approach can incorporate the degree of uncertainty and deviations of variables and provide more versatile and reliable results. In this research, the reliability of case histories from stable and failed pillars of South Africa presented by Merwe and Mathey is examed. The updated Salamon and Munro strength formula(S-M formula) and Merwe and Mathey strength formula(M-M formula) are evaluated through a probabilistic approach. It is concluded that stable pillar cases have a reliability value greater than 0.83 while the reliability value of failed pillar cases are slightly larger than 0.50. There seems to be a positive relation between safety factor and reliability. The reliability of a pillar increases with pillar width but decreases with depth of cover, pillar height and entry width. The reliability analysis also confirms that M-M strength formula has a better distinction between the stable and failed pillar cases.