为了推动脉冲功率技术的应用,研制了紧凑、可高重复频率运行的固态脉冲功率源。通过大功率固体开关及电路拓扑结构的比较,选择了基于光导开关的层叠Blumlein线型脉冲功率源这一技术路线。基于铁电陶瓷脉冲形成线和光导开关构建了大电流...为了推动脉冲功率技术的应用,研制了紧凑、可高重复频率运行的固态脉冲功率源。通过大功率固体开关及电路拓扑结构的比较,选择了基于光导开关的层叠Blumlein线型脉冲功率源这一技术路线。基于铁电陶瓷脉冲形成线和光导开关构建了大电流固态模块,光导开关通流能力超过4 k A。已经实现的应用包括:研制了200 k V/1 k A固态脉冲功率源并与反射二极管结合实现了重复频率为100 Hz或1 k Hz、脉冲宽度约40 ns的猝发X射线脉冲输出;利用基于光导开关的Blumlein线模块产生的快脉冲进行了血液病原体灭活初步研究,可得当脉冲个数为10个时,在80 k V/cm的电场作用下红细胞悬液中细菌的抑制率为57%。展开更多
Transition metal nitrides (TMNs) are of particular interest by virtue of their synergic advantages of superior electrical conductivity, excellent environmental durability and high reaction selectivity, yet it is dif...Transition metal nitrides (TMNs) are of particular interest by virtue of their synergic advantages of superior electrical conductivity, excellent environmental durability and high reaction selectivity, yet it is difficult to achieve flexible design and operation. Herein, mesocrystal nanosheets (MCNSs) of vanadium nitride (VN) are synthesized via a confined-growth route from thermally stable layered vanadium bronze, representing the first two-dimensional (2D) metallic mesocrystal in inorganic compounds. Benefiting from their single-crystalline-like long-range electronic connectivity, VN MCNSs deliver an electrical conductivity of 1.44×10^5 S/m at room temperature, among the highest values observed for 2D nanosheets. Coupled with their unique pseudocapacitance, VN MCNS-based flexible supercapacitors afford a superior volumetric capacitance of 1,937 mF/cm3. Nitride MCNSs should have wide applications in the energy storage and conversion fields because their intrinsic high conductivity is coupled with the reactivity of inorganic lattices.展开更多
文摘为了推动脉冲功率技术的应用,研制了紧凑、可高重复频率运行的固态脉冲功率源。通过大功率固体开关及电路拓扑结构的比较,选择了基于光导开关的层叠Blumlein线型脉冲功率源这一技术路线。基于铁电陶瓷脉冲形成线和光导开关构建了大电流固态模块,光导开关通流能力超过4 k A。已经实现的应用包括:研制了200 k V/1 k A固态脉冲功率源并与反射二极管结合实现了重复频率为100 Hz或1 k Hz、脉冲宽度约40 ns的猝发X射线脉冲输出;利用基于光导开关的Blumlein线模块产生的快脉冲进行了血液病原体灭活初步研究,可得当脉冲个数为10个时,在80 k V/cm的电场作用下红细胞悬液中细菌的抑制率为57%。
文摘Transition metal nitrides (TMNs) are of particular interest by virtue of their synergic advantages of superior electrical conductivity, excellent environmental durability and high reaction selectivity, yet it is difficult to achieve flexible design and operation. Herein, mesocrystal nanosheets (MCNSs) of vanadium nitride (VN) are synthesized via a confined-growth route from thermally stable layered vanadium bronze, representing the first two-dimensional (2D) metallic mesocrystal in inorganic compounds. Benefiting from their single-crystalline-like long-range electronic connectivity, VN MCNSs deliver an electrical conductivity of 1.44×10^5 S/m at room temperature, among the highest values observed for 2D nanosheets. Coupled with their unique pseudocapacitance, VN MCNS-based flexible supercapacitors afford a superior volumetric capacitance of 1,937 mF/cm3. Nitride MCNSs should have wide applications in the energy storage and conversion fields because their intrinsic high conductivity is coupled with the reactivity of inorganic lattices.