期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于主成分分析法和核主成分分析法的机器人全域性能综合评价 被引量:9
1
作者 赵京 李立明 《北京工业大学学报》 CAS CSCD 北大核心 2014年第12期1763-1769,共7页
在机器人运动学和动力学性能评价中,表示机器人运动学和动力学性能的指标众多,全域性能指标是其中一项重要的评价指标,而全域性能指标又包括:线速度全域性能指标、角速度全域性能指标等指标.不同指标间往往存在不同程度的相关性,其中有... 在机器人运动学和动力学性能评价中,表示机器人运动学和动力学性能的指标众多,全域性能指标是其中一项重要的评价指标,而全域性能指标又包括:线速度全域性能指标、角速度全域性能指标等指标.不同指标间往往存在不同程度的相关性,其中有些相关性非常显著,这使它们提供的信息有可能发生重叠.引入统计学原理,依据线性降维与非线性降维原则,应用主成分分析法(principal component analysis,PCA)和核主成分分析法(kernel principal component analysis,KPCA)对不同尺度的PUMA560机器人的全域性能进行综合评价,从而选择综合全域性能最优的机器人.计算结果表明:KPCA方法较PCA方法有更好的降维效果,能够更有效地处理多个单一性指标间的非线性关系,提供更多的综合全域性能评价信息,可为建立机器人综合全域性能与其尺度之间的数值计算关系,为基于综合全域性能指标最佳尺度选取的研究提供科学的参考依据. 展开更多
关键词 机器人 全域性性能 主成分分析法 核主成分分析法 综合评价
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部