DNA methylation is a critical epigenetic mechanism that influences gene transcription, genomic stability, X-chromosome inactivation and other factors, and appropriate DNA methylation is crucial in development. DNA met...DNA methylation is a critical epigenetic mechanism that influences gene transcription, genomic stability, X-chromosome inactivation and other factors, and appropriate DNA methylation is crucial in development. DNA methyltransferase 1 (DNMT1) plays an important role in maintaining the established methylation pattern during DNA replication. Although the effect of DNA methylation on embryonic development has been well known in vertebrates, little research has been carried out in invertebrates, especially in marine bivalves. In this study, the DNMT1 gene (MyDNMT1) was firstly identified from Mizuhopecten yessoensis. The full-length cDNA of MyDNMT1 was 5 039 bp, consisted of a 5' untranslated region (5'-UTR) of 79 bp, a 3' untranslated region (3'-UTR) of 199 bp, and a 4 761 bp open reading frame (ORF) encoding a peptide of 1 586 amino acids without a putative signal peptide. The relative mRNA expression level of MyDNMT1 was measured during the embryonic development of M. ydssoensis using real-time PCR, which revealed that the level at stage zygote and trochophore were significantly higher than that at other stages. We further examined the global DNA methylation during development by colorimetric method. The results showed that the methylation level was increased and reached the peak at blastula stage, then dramatically decreased, and fluctuated at early D-shaped larva stage. This study provided greater insight into the DNA methylation of embryonic development, which obtained a better understanding of the relationship between the DNA methylation and the embryonic development in bivalve mollusks.展开更多
基金Supported by Earmarked Fund for Modern Agro-industry Technology Research System of China(CARS-49)Natural Science Foundation of Liaoning Province(201602408)~~
文摘DNA methylation is a critical epigenetic mechanism that influences gene transcription, genomic stability, X-chromosome inactivation and other factors, and appropriate DNA methylation is crucial in development. DNA methyltransferase 1 (DNMT1) plays an important role in maintaining the established methylation pattern during DNA replication. Although the effect of DNA methylation on embryonic development has been well known in vertebrates, little research has been carried out in invertebrates, especially in marine bivalves. In this study, the DNMT1 gene (MyDNMT1) was firstly identified from Mizuhopecten yessoensis. The full-length cDNA of MyDNMT1 was 5 039 bp, consisted of a 5' untranslated region (5'-UTR) of 79 bp, a 3' untranslated region (3'-UTR) of 199 bp, and a 4 761 bp open reading frame (ORF) encoding a peptide of 1 586 amino acids without a putative signal peptide. The relative mRNA expression level of MyDNMT1 was measured during the embryonic development of M. ydssoensis using real-time PCR, which revealed that the level at stage zygote and trochophore were significantly higher than that at other stages. We further examined the global DNA methylation during development by colorimetric method. The results showed that the methylation level was increased and reached the peak at blastula stage, then dramatically decreased, and fluctuated at early D-shaped larva stage. This study provided greater insight into the DNA methylation of embryonic development, which obtained a better understanding of the relationship between the DNA methylation and the embryonic development in bivalve mollusks.