相伴于Ⅰ型不可约正交对称 Lie 代数(U,θ)的 Riemann 全对称空间的保距诱导了(?)的一个令对应于 U 的θ不变点集 K 的(?)不变的自同构(?),且令(U,θ)的伴随空间的基本群π_1(p_u~*)不变.相伴于(U,θ)的 Riemann 全对称空间保距的充分...相伴于Ⅰ型不可约正交对称 Lie 代数(U,θ)的 Riemann 全对称空间的保距诱导了(?)的一个令对应于 U 的θ不变点集 K 的(?)不变的自同构(?),且令(U,θ)的伴随空间的基本群π_1(p_u~*)不变.相伴于(U,θ)的 Riemann 全对称空间保距的充分必要条件是它们对应的π_1(p_u~*)的子群在上述(?)下同构.π_1(p_u~*)(?)(?)/Γ_0,由Aut U/Ad U 中令 K 不变的元在((?))/Γ_0 上的作用得到了π_1(p_u~*)的子群在上述元下的同构分类,因而得到了Ⅰ型不可约 Riemann 全对称空间在保距下的分类.展开更多
Abstract This paper gencralizes the result about linear isometries of S~ spaces given by W.P.Novinger and D.M.Oberlin[2]for the unite dise of C to the bounded symmetric domains of C^n
In this paper,a class of new geometric flows on a complete Riemannian manifold is defined. The new flow is related to the generalized(third order) Landau-Lifshitz equation. On the other hand it could be thought of a...In this paper,a class of new geometric flows on a complete Riemannian manifold is defined. The new flow is related to the generalized(third order) Landau-Lifshitz equation. On the other hand it could be thought of as a special case of the Schroodinger-Airy flow when the target manifold is a Koahler manifold with constant holomorphic sectional curvature. We show the local existence of the new flow on a complete Riemannian manifold with some assumptions on Ricci tensor. Moreover,if the target manifolds are Einstein or some certain type of locally symmetric spaces,the global results are obtained.展开更多
文摘相伴于Ⅰ型不可约正交对称 Lie 代数(U,θ)的 Riemann 全对称空间的保距诱导了(?)的一个令对应于 U 的θ不变点集 K 的(?)不变的自同构(?),且令(U,θ)的伴随空间的基本群π_1(p_u~*)不变.相伴于(U,θ)的 Riemann 全对称空间保距的充分必要条件是它们对应的π_1(p_u~*)的子群在上述(?)下同构.π_1(p_u~*)(?)(?)/Γ_0,由Aut U/Ad U 中令 K 不变的元在((?))/Γ_0 上的作用得到了π_1(p_u~*)的子群在上述元下的同构分类,因而得到了Ⅰ型不可约 Riemann 全对称空间在保距下的分类.
文摘Abstract This paper gencralizes the result about linear isometries of S~ spaces given by W.P.Novinger and D.M.Oberlin[2]for the unite dise of C to the bounded symmetric domains of C^n
基金supported by National Natural Science Foundation of China(Grant Nos.11226082,11301557 and 10990013)
文摘In this paper,a class of new geometric flows on a complete Riemannian manifold is defined. The new flow is related to the generalized(third order) Landau-Lifshitz equation. On the other hand it could be thought of as a special case of the Schroodinger-Airy flow when the target manifold is a Koahler manifold with constant holomorphic sectional curvature. We show the local existence of the new flow on a complete Riemannian manifold with some assumptions on Ricci tensor. Moreover,if the target manifolds are Einstein or some certain type of locally symmetric spaces,the global results are obtained.