期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
注意力机制和全局卷积在光伏板分割中的应用
1
作者 李青 李海涛 +1 位作者 李辉 张俊虎 《计算机工程与应用》 CSCD 北大核心 2024年第4期237-248,共12页
准确识别光伏对光伏产业有效健康发展至关重要。高分辨率遥感图像复杂的背景和光伏板形状颜色多变给光伏识别带来巨大的挑战。针对高分辨率遥感图像中光伏用地提取问题,提出网络以精确地提取光伏用地。该网络采用编码器和解码器的形式... 准确识别光伏对光伏产业有效健康发展至关重要。高分辨率遥感图像复杂的背景和光伏板形状颜色多变给光伏识别带来巨大的挑战。针对高分辨率遥感图像中光伏用地提取问题,提出网络以精确地提取光伏用地。该网络采用编码器和解码器的形式融合多层特征以结合丰富的语义信息,利用全局卷积和双注意力机制捕获重要的空间特征和通道特征,并使用通道融合模块恢复丢失的部分通道信息。提出的方法可以有效解决光伏板边缘模糊和光伏板粘连的问题。在公开光伏数据集上的实验表明,与U-Net、SegNet、DeepLabv3和DeepLabv3+相比,所提方法在PV01、PV03、PV08三个数据集上的IoU分别达到87.02%、92.98%和88.43%。实验证明所提方法能对高分辨率遥感图像光伏板进行高准确率分割。 展开更多
关键词 高分辨率遥感图像 光伏用地 全局卷积 注意力机制 语义分割
下载PDF
优化非线性激活函数-全局卷积神经网络的物体识别算法 被引量:4
2
作者 安凤平 《小型微型计算机系统》 CSCD 北大核心 2021年第2期393-398,共6页
传统的物体识别算法识别精度、自适应能力弱等问题已然不能满足实际的仓储物流领域对物体识别精度的要求.近年来,相关学者提出了基于深度学习的物体识别算法,它得到一定的推广和应用.但是,深度学习在物体识别的应用过程中存在以下问题:... 传统的物体识别算法识别精度、自适应能力弱等问题已然不能满足实际的仓储物流领域对物体识别精度的要求.近年来,相关学者提出了基于深度学习的物体识别算法,它得到一定的推广和应用.但是,深度学习在物体识别的应用过程中存在以下问题:一是深度学习模型中激活函数的非线性建模能力弱;二是深度学习模型大量重复的池化操作丢失信息.鉴于此,本文提出了一种参数形式统一且可学习的指数非线性单元(Multiple Parameters Exponential Linear Units,MPELU).它通过在ELU(Exponential Linear Units)中引入两个学习的参数,提升模型的非线性建模能力.同时,本文提出了一种新的全局卷积神经网络结构,减少大量池化操作丢失特征信息的问题.基于上述思想,本文提出了优化非线性激活函数-全局卷积神经网络的物体识别算法.利用本文所提算法对CIFAR100数据集和ImageNet数据集分别进行实验.结果表明,本文所提物体识别方法不仅识别准确率较传统机器学习、其他深度学习模型有较大幅度提升,而且具有良好的稳定性和鲁棒性. 展开更多
关键词 深度学习 全局卷积神经网络 非线性激活函数 物体检测 物体识别
下载PDF
基于全局时空图卷积神经网络的城市交通流量预测
3
作者 王佳昊 黎文斌 +1 位作者 郭仕尧 向平 《计算机科学》 CSCD 北大核心 2024年第S02期534-542,共9页
交通流量预测在智能交通系统(ITS)中发挥着重要作用,将城市中复杂的时空相关性高效且全面地提取出来是交通流量预测中面临的关键挑战。交通速度不仅在时间维度上具有短期和长期周期性依赖关系,而且在空间维度上具有局部和全局依赖性,现... 交通流量预测在智能交通系统(ITS)中发挥着重要作用,将城市中复杂的时空相关性高效且全面地提取出来是交通流量预测中面临的关键挑战。交通速度不仅在时间维度上具有短期和长期周期性依赖关系,而且在空间维度上具有局部和全局依赖性,现有方法对捕获交通数据的时空依赖关系有一定的局限。为此,文中提出了一种基于全局时空图卷积神经网络(Global Spatial-Temporal Graph Convolutional Network,GSTGCN)的深度学习模型,用于解决在城市交通速度预测的局限性。该模型中存在3种时空分量,可相应地对交通数据中的近期、天周期、周周期这3种不同的时空相关性进行建模。每个时空分量都由时间模块和空间模块组成,时间模块为了更好地获取交通数据的时间维度信息,引入了Informer机制以自适应地分配特征权重。空间模型为了更好地获取交通数据的空间关系,引入了图卷积神经网络来提取交通数据的局部和全局空间信息。在两个不同的真实数据集上进行了测试,结果表明所提出的GSTGCN优于最先进的基线模型。 展开更多
关键词 交通流量预测 全局时空图卷积网络 时空依赖性
下载PDF
改进的全局卷积网络在路面裂缝检测中的应用 被引量:11
4
作者 李刚 高振阳 +2 位作者 张新春 赵怀鑫 刘卓 《激光与光电子学进展》 CSCD 北大核心 2020年第8期103-111,共9页
针对传统裂缝图像分割方法不能准确提取混凝土表面裂缝的难题,提出了一种改进的轻量级全局卷积网络的路面裂缝图像分割模型。根据深度卷积网络原理,使用大卷积核对裂缝图像进行分类和定位,针对裂缝特征构建轻量级的语义分割MobileNetv2-... 针对传统裂缝图像分割方法不能准确提取混凝土表面裂缝的难题,提出了一种改进的轻量级全局卷积网络的路面裂缝图像分割模型。根据深度卷积网络原理,使用大卷积核对裂缝图像进行分类和定位,针对裂缝特征构建轻量级的语义分割MobileNetv2-GCN模型。实验对比结果表明,该模型在三个公开裂缝数据集上都表现出优越的性能。采用中轴骨架算法提取语义分割后的裂缝骨架,计算裂缝平均宽度的物理值,其实验结果具有较高的准确性,可为公路健康检测提供可靠的数据支持。 展开更多
关键词 图像处理 语义分割 卷积 全局卷积网络 平均交并比 骨架提取
原文传递
GCM^(+)-LANet:遥感图像语义分割的全局卷积模块与局部注意力网络模型 被引量:1
5
作者 翁梦倩 胡蕾 +2 位作者 张永梅 凌杰 李云洪 《遥感技术与应用》 CSCD 北大核心 2022年第4期820-828,共9页
遥感图像地物种类丰富、尺寸多变、分布不均衡、背景复杂,导致经典图像语义分割网络难以在遥感图像上取得理想分割效果。局部注意力网络模型(LANet)在遥感图像语义分割上取得了较好的实验效果,但大尺寸、小尺寸和细长的地物目标分割效... 遥感图像地物种类丰富、尺寸多变、分布不均衡、背景复杂,导致经典图像语义分割网络难以在遥感图像上取得理想分割效果。局部注意力网络模型(LANet)在遥感图像语义分割上取得了较好的实验效果,但大尺寸、小尺寸和细长的地物目标分割效果不佳。提出了一种改进LANet网络的高分辨率遥感图像语义分割网络模型,首先,针对全局特征提取设计了全局卷积模块(GCM^(+)),以组合卷积的形式扩大感受野,提升大尺寸地物目标的分割性能;其次,利用针对计算机视觉提出的激活函数Funnel ReLU(FReLU)来解决细小目标漏分的问题。实验结果表明:该网络模型在Potsdam数据集上平均交并比达到了75.83%,像素准确率达到了94.95%,比基础网络LANet有较大提升。 展开更多
关键词 遥感图像 语义分割 全局卷积模块 局部注意力网络模型 激活函数
原文传递
全局双边网络的语义分割算法 被引量:5
6
作者 任天赐 黄向生 +2 位作者 丁伟利 安重阳 翟鹏博 《计算机科学》 CSCD 北大核心 2020年第S01期161-165,共5页
语义分割任务是对图像中的物体按照类别进行像素级别的预测,其难点在于在保留足够空间信息的同时获取足够的上下文信息。为解决这一问题,文中提出了全局双边网络语义分割算法。该算法将大尺度卷积核融入BiSeNet网络中,在BiSeNet网络原... 语义分割任务是对图像中的物体按照类别进行像素级别的预测,其难点在于在保留足够空间信息的同时获取足够的上下文信息。为解决这一问题,文中提出了全局双边网络语义分割算法。该算法将大尺度卷积核融入BiSeNet网络中,在BiSeNet网络原有的空间路径和上下文路径两条分支的基础上增加全局路径分支,使网络能够捕获更多的上下文信息,同时提出将BiSeNet网络中的注意力优化模块和特征融合模块中的全局池化模块替换为全局卷积模块,进一步提高了网络获取上下文信息的能力,从而使预测结果更加准确。实验结果表明,该算法在Cityscapes数据集上将交并比(MIoU)指标提高了0.84%,获得了优于BiSeNet网络的表现。 展开更多
关键词 语义分割 双边分割网络 全局卷积网络
下载PDF
改进的U-Net在视网膜血管分割上的应用 被引量:3
7
作者 谷鹏辉 肖志勇 《计算机科学与探索》 CSCD 北大核心 2022年第3期683-691,共9页
针对眼底视网膜血管分割中血管边界难以精确识别以及血管与背景对比度低而难以分割的问题,提出一种编码器-解码器结构的算法。为了提高算法在血管边界的分割能力,在编码部分采用全局卷积网络(GCN)和边界细化(BR)替换传统的卷积层;在跳... 针对眼底视网膜血管分割中血管边界难以精确识别以及血管与背景对比度低而难以分割的问题,提出一种编码器-解码器结构的算法。为了提高算法在血管边界的分割能力,在编码部分采用全局卷积网络(GCN)和边界细化(BR)替换传统的卷积层;在跳跃连接部分引入改进的位置注意模块(PA)和通道注意模块(CA),目的是增加血管与背景之间的对比度,使网络更好地将血管与背景分割开;此外,为了提高网络的性能,在编码部分的最后一层使用密集卷积网络解决网络过拟合问题,同时为了在一定程度上解决梯度爆炸、梯度消失的问题,在解码部分的每一层使用卷积长短记忆网络提升网络获取特征信息的能力。在公共的数据集DRIVE和CHASE;B1中进行测试,以敏感性、特异性、准确性、F1-Score和AUC为评价指标,其中准确性和AUC分别达到了96.99%、98.77%和97.51%、99.01%。该算法能有效提高眼底图像血管分割的准确率。 展开更多
关键词 视网膜血管 U-Net 边界细化(BR) 位置注意模块(PA) 通道注意模块(CA) 全局卷积网络(GCN)
下载PDF
改进PSENet的自然场景文本检测方法 被引量:1
8
作者 彭栋 支世尧 +1 位作者 李盛达 杨鹏 《计算机时代》 2022年第6期89-92,96,共5页
基于深度学习的检测方法在文本形状较规则的情况下,已经取得较好的检测结果,但对于倾斜以及弯曲的文本行仍有改进空间。文章在渐进式尺度扩展网络PSENet的基础上,通过使用Res2Net模块提取多尺度特征,并结合全局卷积网络GCN进行特征融合... 基于深度学习的检测方法在文本形状较规则的情况下,已经取得较好的检测结果,但对于倾斜以及弯曲的文本行仍有改进空间。文章在渐进式尺度扩展网络PSENet的基础上,通过使用Res2Net模块提取多尺度特征,并结合全局卷积网络GCN进行特征融合,来对原有模型进行改进。根据在SCUT-CTW1500和Total-Text数据集的实验结果对比,证明改进的算法有效可行。 展开更多
关键词 文本检测 语义分割 多尺度 全局卷积
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部