期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
优化非线性激活函数-全局卷积神经网络的物体识别算法 被引量:3
1
作者 安凤平 《小型微型计算机系统》 CSCD 北大核心 2021年第2期393-398,共6页
传统的物体识别算法识别精度、自适应能力弱等问题已然不能满足实际的仓储物流领域对物体识别精度的要求.近年来,相关学者提出了基于深度学习的物体识别算法,它得到一定的推广和应用.但是,深度学习在物体识别的应用过程中存在以下问题:... 传统的物体识别算法识别精度、自适应能力弱等问题已然不能满足实际的仓储物流领域对物体识别精度的要求.近年来,相关学者提出了基于深度学习的物体识别算法,它得到一定的推广和应用.但是,深度学习在物体识别的应用过程中存在以下问题:一是深度学习模型中激活函数的非线性建模能力弱;二是深度学习模型大量重复的池化操作丢失信息.鉴于此,本文提出了一种参数形式统一且可学习的指数非线性单元(Multiple Parameters Exponential Linear Units,MPELU).它通过在ELU(Exponential Linear Units)中引入两个学习的参数,提升模型的非线性建模能力.同时,本文提出了一种新的全局卷积神经网络结构,减少大量池化操作丢失特征信息的问题.基于上述思想,本文提出了优化非线性激活函数-全局卷积神经网络的物体识别算法.利用本文所提算法对CIFAR100数据集和ImageNet数据集分别进行实验.结果表明,本文所提物体识别方法不仅识别准确率较传统机器学习、其他深度学习模型有较大幅度提升,而且具有良好的稳定性和鲁棒性. 展开更多
关键词 深度学习 全局卷积神经网络 非线性激活函数 物体检测 物体识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部