-
题名基于融合信息的癌症相关基因选择方法
被引量:2
- 1
-
-
作者
张树波
赖剑煌
-
机构
广州航海高等专科学校计算机系
中山大学数学与计算科学学院
广东省信息安全技术重点实验室
中山大学信息技术与科学学院
-
出处
《计算机科学》
CSCD
北大核心
2010年第12期171-174,196,共5页
-
基金
国家自然科学基金(No.60675016
60633030)资助
-
文摘
基因表达数据的出现,为人类从分子生物学的角度研究和探索癌症的发病机理提供了广阔的前景,利用基因表达数据发现与癌症相关的基因对于癌症的诊断和治疗具有重要的意义。在过去的十几年里,已经有很多种计算方法被成功地用于从基因表达数据中找出与癌症相关的关键基因,然而,不同的方法从不同的角度刻画基因对不同类型样本的区分能力,它们选择出来的关键基因可能不一致,这将给医学解释和应用带来困扰。现提出一种融合的方法,即将基因在不同方面对样本的判别能力结合起来,首先计算每个基因的信息增益、全局判别能力和局部判别能力,再用它们的识别率进行加权,进而计算每个基因的综合判别能力,最后筛选出判别能力最高的基因子集作为关键基因子集。实验结果表明,此方法得到了比采用单独一种评价标准更好的识别效果。
-
关键词
基因表达数据
基因选择
信息增益
全局可分性
局部可分性
融合信息
-
Keywords
Gene expression data
Gene selection
Information gain
Global separability
Local separability
Integrated information
-
分类号
TP3-05
[自动化与计算机技术—计算机科学与技术]
-