期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于i-vector全局参数联合的说话人识别 被引量:1
1
作者 杨明亮 龙华 +1 位作者 邵玉斌 杜庆治 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2021年第1期144-151,共8页
以高斯通用背景模型(Gaussian mixture model-universal background model,GMM-UBM)和i-vector模型为主的说话人识别算法在实际应用中取得了不错的成绩,但i-vector说话人识别模型中存在没有充分考虑通用背景(universal background,UB)... 以高斯通用背景模型(Gaussian mixture model-universal background model,GMM-UBM)和i-vector模型为主的说话人识别算法在实际应用中取得了不错的成绩,但i-vector说话人识别模型中存在没有充分考虑通用背景(universal background,UB)数据与训练数据耦合性的问题导致模型性能不佳。提出了基于i-vector全局参数联合(global parameter joint of identify vector,GPJ-IV)的说话人识别方法。该方法利用背景说话人特征训练得到说话人通用背景模型(universal background model,UBM),构建基于全局联合差异空间和联合信道补偿的GPJ-IV模型。通过实验测试并与传统方法进行对比,实验结果显示,所提出的GPJ-IV模型相比i-vector模型,等错误率(equal error rate,EER)和最小检测代价函数(minimum detection cost function,MinDCF)性能分别提升了58.99%和15.9%。 展开更多
关键词 i-vector模型 全局联合差异空间 GPJ-IV模型 说话人识别
下载PDF
基于改进的i-vector 的方言语种识别
2
作者 黄洪设 刘本永 《通信技术》 2023年第2期156-160,共5页
经典的i-vector的提取方法利用方言特征在通用背景模型(Universal Background Model,UBM)的统计差异来构建全局差异空间,对方言语种的区分能力较弱。为此,提出了一种基于改进的i-vector的提取算法,利用方言特征在方言相关的高斯混合模型... 经典的i-vector的提取方法利用方言特征在通用背景模型(Universal Background Model,UBM)的统计差异来构建全局差异空间,对方言语种的区分能力较弱。为此,提出了一种基于改进的i-vector的提取算法,利用方言特征在方言相关的高斯混合模型(Gaussian Mixture Model,GMM)上的统计差异来构建全局差异空间,提升i-vector对方言语种的区分能力。首先基于方言相关GMM分别构建全局差异空间;其次拼接各空间中提取到的i-vector并进行主成分分析(Principal Component Analysis,PCA)降维,得到改进的i-vector;最后采用高斯概率线性判别分析(Gaussian Probabilistic Linear Discriminant Analysis,GPLDA)模型进行建模和打分。实验表明,所提算法较经典i-vector算法能更有效地提升对方言语种的识别性能。 展开更多
关键词 方言语种识别 方言相关GMM 全局差异空间 i-vector
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部